Show candidates related to:
Show candidates that will help:
Show candidates by anticipated funding source:
Filter candidates by the candidates' timeline target:
 
Candidates that have advanced to Milestone 3 are outlined in blue.

Research Candidate Statement
Ranked #0
Funding: $450,000
Funding Source: Full NCHRP
Timeframe: 18-24 months
Background/Description

Financial risks can threaten the strategic objectives of transportation agencies - e.g., the safe and reliable and efficient movement of people and goods. For example, the Highway Trust Fund is tied to taxes on gas and diesel. However, the recent COVID-19 pandemic greatly reduced American consumption, thus dramatically reducing revenues. State DOTs have seen their budgets slashed by 30% or more, forcing delays in some projects. Furthermore, external mandates can impose both risks and opportunites. A well-funded mandate could mean state DOTs have additional funding for enhancing resilience, while an unfunded mandate could force a DOT to choose between maintenance and projects. The objective of this project is to help transportation leaders with decision-making tools for allocating limited resources when subjected to unpredicatable financial conditions.

Objectives

The purpose of the proposed research project is to provide state DOTs with the necessary tools to assess and manage financial risk at the enterprise and program levels.

The specific research tasks to accomplish the main objective include:

• Task 1 – Conduct an in-depth literature review of all studies related to assessment and management of financial risks in transportation agencies, especially at the enterprise and program levels, including national and international examples as available.
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate financial risk at the enterprise and program levels.
• Task 3 – Develop a methodology for identifying and quantifying financial risks at the enterprise and program levels.
• Task 4 – Develop metrics and performance indicators for evaluating effectiveness of financial risk countermeasures.
• Task 5 – Develop decision-making tools for resource allocation under conditions of financial uncertainty.
• Task 6 – Develop methodology and guidance on consideration of program and potentially project-level financial risk within the enterprise.
• Task 7 – Pilot test the developed processes with multiple state DOTs and revised methodology as needed.
• Task 8 – Develop an implementation guide to help state DOTs to incorporate these processes into existing agency programs and projects.

Champions
This candidate currently has no champions

View Full Page
Research Candidate Statement
Ranked #0
Funding: $450,000
Funding Source: Full NCHRP
Timeframe: 18-24 months
Background/Description

FHWA Directive 5520 encourages state DOTs to develop risk-based, cost effective strategies to minimize the impacts of climate change. Environmental stressors, such as extreme heat and extreme cold, and changes in the frequency and magnitude of extreme events, is changing the lifecycle of transportation assets; i.e, reducing service life, shortening replacement cycles, and increasing maintenance costs. Maintenance personnel offer valuable insight as to the costs associated with achieving performance goals. At the same time, maintenance personnel will require guidance as to how to incorporate risk models into maintenance, inspection, replacement, and repair cycles so that scheduled and routine maintenance continue to mitigate the risk from asset deterioration.

Objectives

The purpose of the proposed research project is to develop a framework and guidance to help state DOTs on how to integrate and manage risk into maintenance practice. The specific research tasks to accomplish the main objective include:
• Task 1 – Conduct an in-depth literature review of all studies related to risk assessment and its incorporation in maintenance practices not only in the transportation sectors but also in other sectors (e.g., water sector, etc.)
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate risk assessment in maintenance practices
• Task 3 – Develop methodologies to incorporate existing risk assessment methodologies into maintenance practices.
• Task 4 – Develop methodologies for determining how to adjust maintenance cycles and changes in maintenance costs under non-stationary conditions.
• Task 5 – Develop guidance to help state DOTs to implement risk assessments into maintenance practice.

Champions
This candidate currently has no champions

View Full Page
Research Candidate Statement
Ranked #0
Funding: $0
Funding Source: Domestic Scan
Timeframe:
Background/Description

Started from War Games topics, planning to submit to the Domestic Scan Program
• Focused on how do we integrate accepted best practice learnings and revisit our organizational mission across sectors to create a more safe, equitable society?
• Currently researching organizational missions, emerging performance areas, and equity plans within organizations before next meeting

Areas we may want to include:
- Organizational components that have been successful (for example)
- Organizational factors
- Risk management approaches
- Innovative strategies
- Stakeholder partnership (more than engagement)
- Successful support systems
- Strategic frameworks - organizational missions
- Performance management systems
- Equity plans, etc.
- Types of leadership exhibited in high-performing agencies

Also consider barriers to addressing societal needs, how leading agencies have overcome these challenges (for example):
- Rapid pace of change
- Complex, sometimes conflicting social pressures
- Funding
- Politics
- Other?

Objectives

Process
- I.D. promising practices
- Assess likelihood of reproducing these results
- Investigate issues, assess tech transfer opportunities and methods
- Document results

Champions
Jean Wallace | MnDOT
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #0
Funding: $500,000
Funding Source: Full NCHRP
Timeframe: 18-24 months
Background/Description

 Emerging technologies, such as the use of drones for inspections, LiDAR field data collection, and continuous monitoring of real-time sensor data (among others), hold the promise of transforming asset data collection for transportation asset management. As this technology has been evolving and improving, federal regulation, specifically, MAP-21 and the FAST Act, has pushed many agencies to collect and utilize a detailed inventory of infrastructure assets and transportation data. With the collection of high-volume asset inventory and condition data, such as LiDAR point cloud data, the accessibility and affordability of data collection has become a clear issue for agencies, particularly as they aim to manage and visualize collected data for both strategic and operational transportation asset management planning purposes. Therefore, research and guidance on the benefits and applications of these emerging technologies as well as how frequently that inventory and condition data need to be collected or assessed is necessary.
The focus of this research would be on the following:
• Address the adoption and practical application of these emerging collection technologies and the rapid pace of technological advancement.
• Provide guidance on the level of detail and frequency interval necessary for data collection to support TAM at both the state and local levels.
• Determine how condition assessment can be applied to the performance measures of both pavement and non-pavement assets.
• Further investigate and recommend tools capable of visualizing asset extraction layers, as well as presenting data to stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.
• The research should consider any refinements that would need to occur in network level asset management data collection to make the data useful for compliance (i.e. ADA), safety (i.e. bridge clearances) or engineering (design or construction) purposes.

Objectives

Working backward from the key decisions that need to be made across stakeholder groups over an asset’s lifecycle, this project seeks to identify current practices and recommend ongoing improvements in relation to collecting, storing, sharing, and maintaining asset inventory and condition data (“data management”). With a focus on implementation, the project will build on existing research by identifying the pros and cons of different data management methods and technologies, so that decision makers across departments can collaborate more effectively when planning and investing in data management approaches. The practice of data management is evolving at a rapid pace, given the proliferation of new technologies that are being used increasingly alongside traditional approaches. In parallel, agencies are recognizing the multi-stakeholder nature of asset management, as departments such as compliance, safety, engineering, operations and environmental begin to see the benefits of access to reliable, accurate asset information. This project will answer key data management questions such as: What data should be collected to address all stakeholder needs? How, when, and how often? Using which technologies and platforms? At what cost? And why?
It will also provide guidance to agencies on the most appropriate approaches to collecting, storing, sharing and maintaining asset data, based on the needs of the various stakeholders involved in data-based decision-making.

Champions
Lauren Gardner | Wood Plc
E-mail
Suzie Heap | WSP
E-mail
Steve Wilcox, P.E. | NYSDOT
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #0
Funding: $415,000
Funding Source: Full NCHRP
Timeframe: 24 months
Background/Description

A visualization can be “effective” in several ways: providing information, informing policy and decision making, and influencing behavior. There is little guidance on how to systematically evaluate a visualization’s effectiveness by either of these measures. This problem affects both transportation professionals and the traveling public – including movers of freight.
Even with clear visualizations providing insight – sophisticated “nuggets of truth” from vast amounts of information and solutions to vexing problems, there may be viewers who do not comprehend or respond. Developing a means to evaluate the effectiveness of visualizations deployed internally and externally would significantly enhance their value.
This research addresses this problem by: evaluating the effectiveness of noteworthy practices currently being pioneered by state DOTs that were documented, but not assessed, in previous NCHRP projects; addressing the new tools that have proliferated, such as Tableau, R, Infogram; and ultimately developing an easy-to-use guide to creating effective visualizations.

Objectives

The object of this research is to develop an easy-to-use guide for evaluating the effectiveness of transportation visualizations that state DOTs can use to improve communication and decision-making. With this guide, state DOTs will have the tools to hone their message, manage the data overload that occurs in visualizations and impact travel behavior with effective visual data increasing safety, security and mobility.
The suggested tasks for this research are:
1) Research the essential components of what makes a visualization effective. Build off NCHRP 226 and 20-24(93)B(02). Evaluate the visualization techniques and practices documented in NCHRP Synthesis 52-16.
2) Create a guidebook that clearly communicates how to approach a new visualization and guide its creation.
3) Evaluate how to gain feedback on the effectiveness of a visualization in communicating information and influencing behavior, and also facilitates decision making. This could build off practices currently used for public service announcements (PSA).
4) Identify or develop noteworthy practices for evaluating the effectiveness of a visualization.
5) Create a Guidebook that provides state DOTs with options for evaluating the effectiveness of a visualization.
6) Integrate the two elements – creation and evaluation – into a guide that demonstrates the feedback loop of continuous improvement enabled by joining these two functions.
7) Establish an online case study website that showcases exceptional and innovative visualizations. This could include a category for the use of emerging data and emerging analytic capacity so state DOTs could maintain currency in innovative practices. The website would be updated by the TRB AED80 Visualization in Transportation Committee yearly by acknowledging award winning entries.

Champions
Nate Higgins | Slalom
E-mail
Frank Broen | Metro Analytics
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #1
Funding: $250,000
Funding Source: AASHTO Committee Support
Timeframe: 15 months
Background/Description

TAM and TPM provide the foundation for performance-based investment decisions in transportation agencies at the federal, state, and local levels. Despite the fact that many transportation agencies have embraced the implementation of robust TAM and TPM programs to support their stewardship responsibilities, these topics are not typically incorporated into traditional education programs. In many cases, practitioners working in these areas acquire the skills needed while working on the job or take advantage of training materials available through various sources with limited support. Challenges with attaining skills, building competencies in an organization are compounded by knowledge succession needs with an aging workforce, tighter budgets, and uncertain in-person opportunities during an on-going pandemic, as well as evolving career expectations from skilled candidates in a globally competitive digital economy. A more accessible, efficient and attractive landscape of offerings, programs and career paths are needed to tackle the spectrum of training needs and challenges for effective TAM and TPM.
This study will explore cross-functional, multidisciplinary competencies, training needs in the TAM and TPM areas so that funding can be sought to streamline usage of existing opportunities, better integrate TAM and TPM principles within available programs, identify new skills needs driven by emerging risks or advancing technology, develop new training programs and partnerships needed. This also includes gaining an understanding of flexible, inclusive career paths to support innovation and productivity while improving return on training investment in a time of economic recovery. The study will inform AASHTO and TRB committees of existing gaps in training and recommend a strategy for addressing the gaps through a separate research study.
It is anticipated that this scoping study would be part of a three-phase research project:
• Phase I: Scoping Study for Developing an Education, Training and Workforce Development Program for TPM and TAM (this project)
• Phase II: Prototype and Testing of TPM/TAM Education, Training and Workforce Tools and Resources
• Phase III: Formal Development and Ongoing Support of TPM/TAM Education, Training and Workforce Tools and Resources

Task Description

Task 1: Define TPM and TAM Training and Education Needs
• Conduct a contextual and comprehensive analysis of the training needs for practitioners in TPM and TAM.
• Assess the knowledge, skills, and abilities needed by practitioners to perform their jobs well.
• Consider delivery methods in addressing needs.

Task 2: Conduct a Gap Analysis
• Summarize available training programs/materials in the US and abroad (notably Canada, Europe, Australia and New Zealand) and through other resources.
• Identify gaps between desired outcomes and current outcomes from available training and education.

Task 3: Develop Recommendations
• Summarize the findings from task 1 and 2.
• Recommend strategies for addressing the gaps.
• Present findings and recommendation in a final report.
• Prepare a Research Problem Statement(s) to develop the recommendations.
• Meet with the project panel to discuss recommendations.
• Incorporate changes into a final version of the report.

Objectives

Better define the needs for education, training and workforce development related to transportation asset management and transportation performance management. Develop resources as needed for the following sub-areas:
Education—Writing curriculum for undergraduate and graduate courses
Training—For DOT and MPO staff in-depth career training, NHI, etc.
Workforce Development—e.g., TC3

Champions
Matt Hardy | AASHTO
E-mail
Katie Zimmerman | APTech
E-mail
Walter Butcher | Crowe, LLC
E-mail
Richard Boadi | Wood, PLC
E-mail
Dr. Basak Bektas | Minnesota State University
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #2
Funding: $7,000,000
Funding Source: Full NCHRP
Timeframe: 5-7 Years
Background/Description

The US experienced 308 weather and climate related disasters since 1980 exceeding $2.085 trillion in physical losses and the loss of 14,492 lives. Between 1980-2020 the average number of billion- dollar events per year was 7.1, that number ballooned to 16.2 billion-dollar events per year on average between 2016-2020 (adjusted for Consumer Price Index). The most billion- dollar weather and climate related disasters occurred in 2020, with 22 billion-dollar events totaling $246.7 billion in losses and 553 deaths. As of September 2021, the current year is looking to break the record set in 2020 having experienced 18 billion-dollar events to date (Billion-Dollar Weather and Climate Disasters: Overview | National Centers for Environmental Information (NCEI) (noaa.gov) ). In addition, the recently published TRB Consensus Study on Resilience Metrics notes that 6 of the world’s 10 most costly natural disasters in 2020 occurred in the United States (TRB Resilience Metrics Consensus Study, 2021). With this level of impact on the nation’s infrastructure, transportation agencies need consistent methods to support decision making to address stressors such as extreme weather and climate change in planning, design, maintenance, and operations.
The TRB Resilience Metrics Consensus Study 2021 calls for the establishment of standard methods of analysis to support benefit-cost assessment to allow agencies to understand the “buy-down” of risk from capital and maintenance investments. In addition, the study calls on Congress to consider requiring that all federal funding candidate projects that involve long-lived assets requirement undergo well defined resilience assessments that account for changing risks of natural hazards and environmental conditions stemming from climate change. The proposed project will allow AASHTO and TRB to develop industry adopted standard methods of quantitative analysis in lieu of federally developed methods.

Proposed Program of Projects

A concerted level of commitment from AASHTO and TRB is needed to develop a single manual to serve as the “go-to” for quantitative analysis of financial risk to agency assets and the traveling public from extreme weather and climate change. Like the Highway Capacity Manual and the Highway Safety Manual, a single resource is needed to ensure consistent methods of analysis between projects and agencies, and to ensure adoption of robust quantitative methods to support benefit-cost analysis and decision making. A single manual will allow state, MPO, federal agencies to compare project investments on a level playing field – same models, same assumptions, same thresholds of performance. A single manual will also support the instruction of how to address extreme weather and climate change in planning and engineering curriculum at Universities ensuring future Transportation Professionals are equipped with the skills needed to support the adoption of such methods into practice. Finally, a single manual will allow the incorporation of extreme weather and climate change considerations in Professional Engineering examinations to further institutionalize these concepts in future design and decision making.
This program will establish a series of individual research projects to support the development of a Highway Resilience Manual born out of NCHRP 23-09, Scoping Study to Develop the Basis for a Highway Standard to Conduct an All-Hazards Risk and Resilience Analysis and NCHRP 20-123(04) Development of a Risk Management Strategic Plan and Research Roadmap. Similar to other NCHRP research programs such as NCHRP 20-102, Impacts of Connected Vehicles and Automated Vehicles on State and Local Transportation Agencies, this is a long-term research program that will result in an industry “standard” for all-hazards risk and resilience analysis for use in design, maintenance, and planning decision-making. In addition, the program of projects will address required data sources and work to field test the Highway Risk and Resilience Manual with a range of agencies as described in the following three phased approach and in the draft Research Roadmap:

  1. Phase I: Development of Highway Risk and Resilience Manual. An anticipated 3-year phase consisting of multiple projects and costing approximately $3,500,000. Year 1 estimated to cost $1,500,000 with years 2 and 3 estimated at $1,000,000 each. There would be multiple projects under this phase including five projects identified through NCHRP 23-09:
    • Establish quantitative assessment methodology for top priority threats and assets (e.g., culverts and flooding)
    • Develop historical data capture process quantitative analysis methods
    • Develop quantitative resilience assessment methodology
    • Establish performance metrics and thresholds for resilience and risk tolerance; provide guidance on reducing risk and improving resilience
  2. Phase II: Implementation of Highway Risk and Resilience Manual. A 2-year, $2,000,000 program that would implement/apply the Highway Risk and Resilience Manual to 8-10 transportation agencies. A few potential projects in Phase II are outlined here:
    • Create internal and external agency communication and collaboration practices to incorporate Highway Risk and Resilience Manual in decision making
    • Develop capacity building plan to identify institutional and educational needs to incorporate Highway Risk and Resilience Manual into practice
    • Pilot test Highway Risk and Resilience Manual
    • Identify institutional organizational and procedural (IOP) changes and implementation strategies for the successful adoption of Highway Risk and Resilience Manual
  3. Phase III: Development of Tools and Resources to Support the Highway Risk and Resilience Manual. A 2-year $1,500,000 effort to create automated, geospatial models that transportation agencies could use to implement the Highway Risk and Resilience Manual across networks or the transportation system.
    • Develop stand alone, open source computer script that can work within a GIS environment to automate Highway Risk and Resilience Manual calculations across multiple assets and threats in a geo-spatial setting
    • Develop spreadsheet-based tools to automate Highway Risk and Resilience Manual calculations across multiple assets and threats in a spreadsheet application
    • Selecting Performance Metrics for Evaluating Effectiveness of Risk Mitigation o Incorporating Risk Management into Maintenance Practice
    • Developing New Performance Metrics for Risk Management
    • Assessing the Impact of Common Risks on Federal Reporting Metrics

Objectives

Transportation owners and operators are responsible for the transportation system and the delivery of a range of services and functions through the management of that system. There are inherent risks involved with the management of these systems, notwithstanding aging infrastructure, and fiscally constrained resources. Many agencies are moving toward performance-based resource allocation while simultaneously recognizing risks that may undermine their strategic goals. As these risks affect every component of a highway system to a greater or lesser extent, accurately accounting for and addressing these risks within a highway agency’s enterprise-wide management program is the goal which currently lacks analysis tools.
Investing in risk and resilience strategies and enhanced recovery to reduce or eliminate the impact of external events is also paramount to ensure a thriving, viable transportation system. Risk management requires the identification and assessment of potential threats and hazards, asset vulnerabilities from applicable threats, an evaluation of potential mitigation actions to reduce risk, a clear and easy to implement process to prioritize mitigation activities, and investment that aligns with agency strategic and performance goals. Asset management and more recently performance management, has been an ongoing focus of many research efforts. However, guidance for analytical risk assessment methods to support risk-based asset management processes is lagging. Risk assessment processes, methods, and tools are needed to integrate risk management into asset and performance management systems. In addition, an understanding of the relationship between risks and system resilience is lacking.
Basics needed:
• Adopted definitions
• Standard framework for quantitative risk based on expected financial losses to agency and traveling public
• Establishment of performance metrics for risk and resilience
• Suggested risk tolerance and resilience performance targets that agencies can customize
• Methods to incorporate climate projections into decision making
• Methods to analyze both deterministic and probabilistic input data (500-yr flood versus climate scenarios)
Future research can expand threats analyzed; assets analyzed; climate projections; life cycle cost; remaining life consideration of assets; environmental impacts, etc.

Champions
Larry Redd | Larry Redd, LLC
E-mail
Adi Smadi | The University of Kansas
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #3
Funding: $500,000
Funding Source: Full NCHRP
Timeframe: 18-24 months
Background/Description

Research is needed on the importance of data governance from the conception of a project’s data dictionary, through the inventory and condition assessment and continuing with the data management and integration into transportation asset management systems. A question worth pursuing is whether all aspects of language, wording, numbering, and measurement units should be standardized or if template guides could be developed for each agency to standardize their unique asset type requirements, but in a nationally recognized format for easy translation.

After establishing governance routines for asset data collection and management, the next phase of research would involve the security aspects of an agency’s data as well as the quality assurance measures applicable to grow confidence in the data’s quality. A full review of best practices for data security procedures could break the barrier of IT to asset manager. Additionally, once definitions and governance procedures are established, the quality assurance process becomes more stream-lined and gives better confidence to the decision makers.

Objectives

● Guidance on establishing BIM data governance and quality standards to support asset management.
● Recommend standards for data transfer between data collection and asset management systems.
● Develop maturity scales for BIM implementation and establish appropriate maturity level for integration of TAM
● Research on BIM applications to support DOTs' data governance specific to the collection of data by one part of the agency can be used directly by other parts of the agency
● Evaluate cost effectiveness of collecting and managing data through BIM at a sufficient level of quality.
● Aligning the focused but detailed project-level data with network-wide but less detailed TAM data.

Champions
Will Duke | Spy Pond Partners
E-mail
Louis Feagans | InDOT
E-mail
Trish Stefanski | MnDOT
E-mail
Buffy Conrad | MDOT SHA
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #4
Funding: $50,000
Funding Source: Synthesis
Timeframe: 6-12 months
Background/Description

A State DOT Transportation Asset Management Plan (TAMP) documents the investment strategies and expected outcomes from various asset classes, starting with the bridges and pavement of the National Highway System. The State DOT TAMP does not replace any existing state transportation plan (e.g., LRTP, freight plan, operations plan, etc.) but does provide critical inputs to existing plans, linking capital and maintenance expenditures related to asset preservation.
At the same time that state DOTs were developing their TAMPs, states also implemented a performance-based planning and programming approach, which applies performance management principles to transportation system policy and investment decisions. Performance-based long range transportation plans, statewide transportation improvement programs (STIPs), metropolitan planning organization (MPO) TIPs, and other performance-based plans like state freight plans must define key goals and objectives and establish measures to analyze short-, medium, and long-term implementation progress.
This Synthesis should review the advancement of State DOTs and MPOs to implement performance-based planning and programming with the help of implementation plans like the TAMP and documented processes for planning, investing, and evaluating performance outcomes.

Objectives

The objective of this synthesis is to identify best practices from State DOTs of how to improve processes through required performance-based planning and programming document development and implementation through exploring:
• How State DOTs and MPOs are linking and including asset management decisions in their traditional planning processes;
• How agency’s integrate asset management project identification and prioritization into required planning processes;
• Gap analyses of where State DOTs and MPOs identify a need for more guidance on how to connect required performance-based documents to programming decisions;
• What management systems are in use to help agencies implement risk-based asset management with performance objectives and targets.
• Examples of where MPOs work in partnership with State DOTs to mobilize National Highway System partner owners (local agencies) to plan/program to performance targets.

Champions
Anna Batista | High Street Consulting Group
E-mail
Meredith Hill | Maryland SHA
E-mail
Jeff Neal | NCTCOG
E-mail
Adi Smadi | The University of Kansas
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #5
Funding: $50,000
Funding Source: Synthesis
Timeframe: 6-12 months
Background/Description

Emerging technologies hold the promise of transforming asset data collection for transportation asset management such as the use of drones for inspections, LiDAR field data collection, continuous monitoring of real-time sensor data, and more. While the technology has been transforming, MAP-21 and the Fast Act jump started at many agencies in attaining an inventory of infrastructure assets and transportation data. At the same time, accessibility and affordability to collect high volumes of asset inventory data, such as LiDAR point cloud data, present the problem of how agencies can visualize and manage such large amounts of data and integrate the many layers for each transportation asset management plan. Now that the need for such data is federally recognized, further research is needed to understand what the latest technologies for asset analysis can offer an agency as well as how frequently that information needs generated.

Objectives

Research is needed in the following areas:
● Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
● What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
● Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

Champions
This candidate currently has no champions

View Full Page
Research Candidate Statement
Ranked #6
Funding: $500,000
Funding Source: Implementation
Timeframe: 12-18 Months
Background/Description

Determining the value of a transportation organization’s physical assets is important for both financial reporting and transportation asset management (TAM). In financial reporting, determining asset value is a fundamental step in preparing a balance sheet for financial statements to inform regulators and investors. For TAM, presenting data on the value of physical assets, such as pavement, bridges, and facilities, communicates what an organization owns and what it must maintain. Furthermore, information about asset value and how it is changing can help establish how the organization is maintaining its asset inventory and helps support investment decisions.

Calculating asset value for TAM is not simply good practice; it is also required of state Departments of Transportation (DOT) by Federal regulations. Title 23 of the Code of Federal Regulations (CFR) Part 515 details requirements for State DOTs to develop a risk-based Transportation Asset Management Plan (TAMP). The TAMP must include a calculation of the value of National Highway System (NHS) pavement and bridges, as well as the cost to maintain asset value.

Recently NCHRP Project 23-06 was performed to develop guidance for calculating asset value to support TAM applications. This research resulted in the development of the Asset Valuation Guide. This document is intended as a companion publication to the Transportation Asset Management Guide published by AASHTO. The Guide is accompanied by a web tool with an online version of the guidance. The guidance was developed to provide immediate support to highway and transit agencies developing their 2022 TAMPs, and to provide continuing support for other TAM-related applications.

Objectives

The objective of this implementation project support further testing and use of Asset Valuation Guide developed through NCHRP Project 23-06. This project will aid a set of transportation agencies in implementing the asset valuation guidance. A set of case studies will be developed based on the agency implementation efforts. Details on the case studies will be added to the web-based version of the asset valuation guidance and subsequent versions of the Asset Valuation Guide. Further, the web and printed versions of the Guide will be revised to reflect the additional experience gained from the case studies.

To support accomplishing the research objectives the effort will incorporate the following activities at a minimum:
• Delivery of a set of workshops to review and summarize the Asset Valuation Guide.
• Identification of a set of six transportation agencies to participate in implementation of the asset valuation guidance.
• Application of the asset valuation guidance for the selected set of agencies, resulting in calculation of asset value by asset class, the cost to maintain asset value and related measures such as the Asset Consumption Ratio, Asset Sustainability Ratio and Asset Funding Ratio.
• Illustration of how information on asset value can support improved TAM decisions.
• Refinement of the Asset Valuation Guide (printed and web versions) based on the results of the case studies.
• Development of supplemental tools and worksheets to assist in calculating asset value to support TAM utilize the Asset Valuation Guide.

Champions
Bill Robert | Spy Pond Partners
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #7
Funding: $0
Funding Source: Synthesis
Timeframe:
Background/Description

Among the many difficulties raised by COVID-19, the pandemic does have the potential of affecting asset management practices in diverse ways. On the one hand, reduced traffic might reduce road maintenance costs; on the other hand, ordering more goods might increase truck traffic and thus increase deterioration. Even if deterioration were the same, the road agency would always have the option of utilizing a less expensive treatment alternative and thus reduce the capital needs and maintenance budget.

Objectives

● Survey and interview State DOTs and others as to their practices during COVID. For example: observe their budget outlays, activities performed and data collection.
● Focus on uncertainty in general - such as funding uncertainty; the results could be utilized for good practices not just in times of widespread disease, but also for times of economic austerity such as a recession. Note: The visualization committee (AED80) has been kicking around a research idea related to how to VISUALIZE uncertainty. Could be a good opportunity to collaborate with that TRB committee. Anne-Marie McDonell and Matt Haubrich are both on AED80 so feel free to reach out.
● Potential to focus on risk management with respect to federal TPM target-setting (rather than risk management with respect to funding uncertainty).

Champions
This candidate currently has no champions

View Full Page
Research Candidate Statement
Ranked #8
Funding: $0
Funding Source: Full NCHRP
Timeframe:
Background/Description

Evaluate and assess the existing national-level performance measure requirements for asset management at the state level to determine applicability and usability of PM measures in asset management decision making. As appropriate, provide recommendations and refinement of the performance measures for better use an application.

Objectives

1. Evaluate current federal PM2 measures, both pavement condition measures and bridge measures, for performance thresholds, and overall performance measure with respect to: Consistency, Usefulness, and Alignment.

2. Identify and address in detail specific challenges for each condition measure for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 3. Provide recommendations to improve existing measures and/or identify metrics that better reflect conditions enhance decision-making taking into account not only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation.

Champions
Todd Shields | INDOT
E-mail
Brad McCaleb | ARDOT
E-mail
Adi Smadi | The University of Kansas
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #9
Funding: $400,000
Funding Source: Full NCHRP
Timeframe: 24 months
Background/Description

Investments in roadways have historically been focused on safety, mobility, and system preservation considerations. As our understanding of the impacts of roadway decisions mature, other factors such as socio-economic impact, sustainability, accountability, transparency, integrity, and innovation are increasing in importance by State Departments of Transportation (DOTs). Recently, strategic initiatives related to DEI are growing in importance and need to be considered in transportation investment planning. Advancing the understanding of DEI and other related indicators can help DOTs improve the impact of TAM investment decisions, especially to underserved communities.

Objectives

The objective of this research is to produce guidance on how DOTs can improve the use of DEI and other related indicators in TAM investment decision making processes.

Tasks will include:
• Compile DEI and other related indicators for use in TAM decision-making
• Develop a framework for applying DEI and other related indicators in TAM decision-making processes, including:
o analysis activities to forecast impact
o scenario planning including identifying alternate investment options with an equity lens
o investment tradeoff decision-making
o community engagement activities including increasing the involvement of underserved communities.
• Develop additional quantitative and qualitative performance measures for asset management and planning that consider DEI and other factors in transportation investment decisions
• Produce a summary of challenges, inherent inequities, and obstacles in asset management and planning activities in order to help transportation add value to underserved communities
• Develop guidance for transportation agencies to use the DEI and other related indicators to balance competing strategic objectives related to asset performance, safety, mobility, and DEI.

Champions
Hyun-A Park | Spy Pond Partners
E-mail
Sherri Mohebbi | ITCurves
E-mail
Adi Smadi | University of Kansas
E-mail
William Johnson | Colorado DOT
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #10
Funding: $550,000
Funding Source: Full NCHRP
Timeframe: 18 months
Background/Description

MAP-21 and the FAST Act laid the groundwork for a comprehensive national-level performance management framework. The first four-year reporting period began on January 1, 2018 and ends on December 31, 2021 and will result in the first complete set of consistent national-level performance management data. This will result in a unique opportunity to conduct the first analysis and assessment of this unique data set as well as combined with other data sets to tell a more complete and consistent state DOT performance management story.
An initial assessment of these data sets has been conducted. In 2020, FHWA sent out letters to each state DOT indicating whether they had made significant progress towards their target achievement for the five safety performance measures. And, in 2021, FHWA sent out subsequent letters about making significant progress with respect to the asset measures and system performance measures. AASHTO obtained copies of these data and conducted its own preliminary analysis of the data to better understand:
1. How far off were the targets from the actual numbers?
2. What is the impact of those states that did not make significant progress?
3. How many states' targets showed improvement?
4. What kind of targets did states establish?
5. What is the correlation between target setting technique and making significant progress?
6. Are there other techniques that could be used to determine making significant progress?
The results of this preliminary analysis was insightful and revealed a lot of good information. For example, a number of visuals were developed to show the how impactful missing a target by less than 0.05% can have on a state DOT not making significant progress. It also demonstrated the complexity associated with understanding what it meant for a state DOT to meet or exceed a target. However, this preliminary analysis, conducted by AASHTO staff and consultant support through the TPM Pooled Fund project, was very limited due to the resources available.
In fall 2021, the Committee on Performance-Based Management leadership group agreed that a more robust and extensive analysis is warranted that includes not only an analysis and assessment of the data, but recommendations on future capacity building activities to support state DOTs in the future as well as an assessment of future performance measures that may be better at telling the national TPM story.

Approach

This research will conducted in four parts.
Part 1 will focus on the detailed analysis of each of the 17 performance measures for the three federal performance measurement areas (safety, asset condition, and system performance). The analysis will primarily include the four years of performance measurement data reported by state DOTs as part of the federal performance management requirements for the first reporting period which goes January 1, 2018 through December 31, 2021. This data is consistent among all of the states and for all of the performance measures resulting in important consistency among the performance measures.
For each of the performance measurement areas, the following will be conducted:
• Data Analysis—Analysis of the performance measures data to better understand how states are performing. All of the data should be made available through the
• Target Setting Approach—Analysis of what type and how state DOTs established targets.
• Target Achievement—Assessment of the extent to which state DOTs achieved their targets.
All of this data and analysis, where applicable, should be made available through the AASHTO TPM Portal Benchmarking website at https://benchmarking.tpm-portal.com/.
Part 2 will focus on developing a comprehensive performance management story which provides an authoritative assessment and narrative of how state DOTs are performing. The performance management story should be based upon the following three categories:
• Funding Sources—A detailed analysis and assessment of the funding sources that state DOTs use to fund transportation projects in their states. This should include an assessment at the individual state as well as at the national level.
• Project Selection Process—A summary of the approaches, frameworks, and techniques state DOTs use to identify projects to fund using their funding sources.
• Condition, Outputs, and Outcomes—Using the results of the Data Analysis from Part 1, provide a summary of the condition of critical assets, the type of outputs state DOTs are seeing through their project selection process, and the long-term outcomes of the project selection process.
The State DOT TPM Story should be made available through the AASHTO TPM Portal website at www.tpm-portal.com. The State DOT TPM Story should include a print version and interactive web-based version that can be reasonably updated as new data is made available.
Part 3 will focus on future capacity building activities and performance measures that could be used to better tell the national TPM story. First, based upon the results and insights gained from Part 1 and 2, needed capacity building activities will be identified and delivered as resources allow. These activities could include training programs offered through the AASHTO TC3 program, new/updated NHI training, or peer exchanges. The focus should be on how best to build the capacity of transportation agencies to deliver a performance-based management program gained from the insights and experiences of the first performance management reporting period.
Second, the final report will provide some conclusions on future performance measures, approaches, and technologies that could be used by transportation agencies to implement and deliver a performance-based management program. These recommendations should be based upon the insights and experience from the first performance management reporting period. It should reflect the idea that the performance management field is constantly changing and evolving, just as society and technology does, and that what and how we measure performance is dynamic.

Objectives

The objective of this research is to prepare an authoritative analysis and assessment of the national performance management data and, based upon the analysis and assessment, to provide recommendations on future capacity building activities and possible new performance measures. There are three sub-objectives focused on:

  1. Analysis of the national performance management data for the three performance measurement areas (safety, assets, and system performance) will be conducted to better understand trends, target setting approaches, and target achievement by state DOTs; and
  2. Assessment of the performance management data that provides a comprehensive and compelling story on the results of the performance management provisions.
  3. Identification of future capacity building needs and performance measures.

Champions
Matthew Hardy, Ph.D. | AASHTO
E-mail
Margaret Anderson Kelliher, Commissioner | Minnesota Department of Transportation
E-mail
Greg Slater, Chair | Committee on Data Management and Analytics
E-mail
Patrick McKenna, Chair | Committee on Safety
E-mail
Scott Marler, Chair | Committee on Transportation System Operations
E-mail
Tim Henkel, Chair | Committee on Performance-Based Management
E-mail
Daniela Bremmer | WSDOT
E-mail
Karen Miller | MoDOT
E-mail

Email Champions

View Full Page
Research Candidate Statement
Ranked #11
Funding: $250,000
Funding Source:
Timeframe: 18 months
Background/Description

Due to external stakeholder requirements and expectations (e.g., MAP 21 and FAST Acts) as well as internal DOT uses, DOTs typically collect pavement condition data (i.e., roughness, cracking and rutting or faulting depending on the pavement surfaces) on an annual cycle. However, disruptions of typical agency activities related to COVID-19 have resulted in data collection challenges, focusing attention on potential impacts of missing a data collection cycle. DOT may also face unforeseen workforce, contracting, data collection or processing challenges or other issues which could result in missed pavement data collection. In these cases, DOTs would benefit from understanding the range of potential impacts as well as potential mitigation strategies available to address these issues. Furthermore, in times of reduced budget, DOTs may desire to reduce the frequency of data collection, however they should be informed of the potential impacts of that decision.

Objectives

1. Evaluate the impacts of incomplete/missing annual pavement data collection to various aspects of agency asset and performance management, including technical considerations, such as network-level condition summary and performance forecast, maintenance, rehabilitation, and reconstruction decision-making, and condition deterioration and treatment improvement modeling.
2. Consider the effect of incomplete/missing data on the organization and processes, such as federal performance reporting and transportation asset management planning requirements, as well as impacts to other internal and external stakeholders and decision-making processes.
3. Analyze and derive recommendations on mitigation strategies that DOT could implement to minimize the impact of incomplete condition data.

Proposed research activities include:
1. Conduct a literature review to document:
○ DOT motivations and/or requirements for annual data collection.
○ Potential technical and organizational impacts or issues associated with missing an annual data collection.
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs known to currently (or in the recent past) complete pavement data collection on a 2 or more year data collection cycle.
2. Building from the literature review, survey State DOTs to capture:
○ DOT motivations and/or requirements for annual data collection
○ Potential technical and organizational impacts or issues associated with missing an annual data collection
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs that currently (or recently) collected pavement data on a 2 or more year data collection cycle
○ DOTs which have previously missed their established collection cycle
3. Conduct follow up interviews/surveys with DOTs that have longer collection cycles or which had previously missed an annual pavement data collection to understand perceived vs. actual impacts (both technical and organizational) and any mitigation strategies they employ.
4. Summarize literature review, survey results and follow up interviews to guide ongoing research activities
5. From a representative set of DOTs, collect available pavement condition and work history data, pavement deterioration and improvement benefit models
6. Utilize collected data to complete a statistical evaluation of the impact missing a year of data collection with respect to forecasted vs. actual performance results, and ability to identify priority investment areas based on previous year’s data collection, as well as other issues identified through the survey
7. Identify potential strategies to mitigate the impacts of incomplete condition data
8. Document survey results and evaluation outcomes
9. Produce a technical report summarizing impacts of, and potential mitigations for, missing an annual pavement collection cycle
Desired products include:
● Detailed listing of current requirements and/or motivations for annual pavement data collection
● Summary of perceived and actual impacts of missing an annual data collection against the listed motivations, supported with a statistical evaluation of actual DOT datasets where applicable
● A summary of potential mitigation strategies that can be employed to reduce the identified impacts

Champions
Bahar Bazargani | SRF Consulting Group
E-mail
Cristina Torres-Machi | University of Colorado Boulder
E-mail

Email Champions

View Full Page
Title Background and Problem Statements Objectives Proposed Research Activities Desired Products Notes and Considerations Funding Estimated Timeframe Category of Funding Status
Assessing Financial Risk at the Program and Enterprise Levels

Financial risks can threaten the strategic objectives of transportation agencies - e.g., the safe and reliable and efficient movement of people and goods. For example, the Highway Trust Fund is tied to taxes on gas and diesel. However, the recent COVID-19 pandemic greatly reduced American consumption, thus dramatically reducing revenues. State DOTs have seen their budgets slashed by 30% or more, forcing delays in some projects. Furthermore, external mandates can impose both risks and opportunites. A well-funded mandate could mean state DOTs have additional funding for enhancing resilience, while an unfunded mandate could force a DOT to choose between maintenance and projects. The objective of this project is to help transportation leaders with decision-making tools for allocating limited resources when subjected to unpredicatable financial conditions.

The purpose of the proposed research project is to provide state DOTs with the necessary tools to assess and manage financial risk at the enterprise and program levels.

The specific research tasks to accomplish the main objective include:

• Task 1 – Conduct an in-depth literature review of all studies related to assessment and management of financial risks in transportation agencies, especially at the enterprise and program levels, including national and international examples as available.
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate financial risk at the enterprise and program levels.
• Task 3 – Develop a methodology for identifying and quantifying financial risks at the enterprise and program levels.
• Task 4 – Develop metrics and performance indicators for evaluating effectiveness of financial risk countermeasures.
• Task 5 – Develop decision-making tools for resource allocation under conditions of financial uncertainty.
• Task 6 – Develop methodology and guidance on consideration of program and potentially project-level financial risk within the enterprise.
• Task 7 – Pilot test the developed processes with multiple state DOTs and revised methodology as needed.
• Task 8 – Develop an implementation guide to help state DOTs to incorporate these processes into existing agency programs and projects.

450000 18-24 months Full NCHRP
Incorporating Risk Management into Maintenance Practice

FHWA Directive 5520 encourages state DOTs to develop risk-based, cost effective strategies to minimize the impacts of climate change. Environmental stressors, such as extreme heat and extreme cold, and changes in the frequency and magnitude of extreme events, is changing the lifecycle of transportation assets; i.e, reducing service life, shortening replacement cycles, and increasing maintenance costs. Maintenance personnel offer valuable insight as to the costs associated with achieving performance goals. At the same time, maintenance personnel will require guidance as to how to incorporate risk models into maintenance, inspection, replacement, and repair cycles so that scheduled and routine maintenance continue to mitigate the risk from asset deterioration.

The purpose of the proposed research project is to develop a framework and guidance to help state DOTs on how to integrate and manage risk into maintenance practice. The specific research tasks to accomplish the main objective include:
• Task 1 – Conduct an in-depth literature review of all studies related to risk assessment and its incorporation in maintenance practices not only in the transportation sectors but also in other sectors (e.g., water sector, etc.)
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate risk assessment in maintenance practices
• Task 3 – Develop methodologies to incorporate existing risk assessment methodologies into maintenance practices.
• Task 4 – Develop methodologies for determining how to adjust maintenance cycles and changes in maintenance costs under non-stationary conditions.
• Task 5 – Develop guidance to help state DOTs to implement risk assessments into maintenance practice.

450000 18-24 months Full NCHRP
ERM – Integrating Accepted Best Practices Learned and Revisiting Our Organizational Mission Across Sectors to Create a More Safe, Equitable Society

Started from War Games topics, planning to submit to the Domestic Scan Program
• Focused on how do we integrate accepted best practice learnings and revisit our organizational mission across sectors to create a more safe, equitable society?
• Currently researching organizational missions, emerging performance areas, and equity plans within organizations before next meeting

Areas we may want to include:
- Organizational components that have been successful (for example)
- Organizational factors
- Risk management approaches
- Innovative strategies
- Stakeholder partnership (more than engagement)
- Successful support systems
- Strategic frameworks - organizational missions
- Performance management systems
- Equity plans, etc.
- Types of leadership exhibited in high-performing agencies

Also consider barriers to addressing societal needs, how leading agencies have overcome these challenges (for example):
- Rapid pace of change
- Complex, sometimes conflicting social pressures
- Funding
- Politics
- Other?

Process
- I.D. promising practices
- Assess likelihood of reproducing these results
- Investigate issues, assess tech transfer opportunities and methods
- Document results

Domestic Scan
Keeping Inventory and Condition Data Up to Date

 Emerging technologies, such as the use of drones for inspections, LiDAR field data collection, and continuous monitoring of real-time sensor data (among others), hold the promise of transforming asset data collection for transportation asset management. As this technology has been evolving and improving, federal regulation, specifically, MAP-21 and the FAST Act, has pushed many agencies to collect and utilize a detailed inventory of infrastructure assets and transportation data. With the collection of high-volume asset inventory and condition data, such as LiDAR point cloud data, the accessibility and affordability of data collection has become a clear issue for agencies, particularly as they aim to manage and visualize collected data for both strategic and operational transportation asset management planning purposes. Therefore, research and guidance on the benefits and applications of these emerging technologies as well as how frequently that inventory and condition data need to be collected or assessed is necessary.
The focus of this research would be on the following:
• Address the adoption and practical application of these emerging collection technologies and the rapid pace of technological advancement.
• Provide guidance on the level of detail and frequency interval necessary for data collection to support TAM at both the state and local levels.
• Determine how condition assessment can be applied to the performance measures of both pavement and non-pavement assets.
• Further investigate and recommend tools capable of visualizing asset extraction layers, as well as presenting data to stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.
• The research should consider any refinements that would need to occur in network level asset management data collection to make the data useful for compliance (i.e. ADA), safety (i.e. bridge clearances) or engineering (design or construction) purposes.

Working backward from the key decisions that need to be made across stakeholder groups over an asset’s lifecycle, this project seeks to identify current practices and recommend ongoing improvements in relation to collecting, storing, sharing, and maintaining asset inventory and condition data (“data management”). With a focus on implementation, the project will build on existing research by identifying the pros and cons of different data management methods and technologies, so that decision makers across departments can collaborate more effectively when planning and investing in data management approaches. The practice of data management is evolving at a rapid pace, given the proliferation of new technologies that are being used increasingly alongside traditional approaches. In parallel, agencies are recognizing the multi-stakeholder nature of asset management, as departments such as compliance, safety, engineering, operations and environmental begin to see the benefits of access to reliable, accurate asset information. This project will answer key data management questions such as: What data should be collected to address all stakeholder needs? How, when, and how often? Using which technologies and platforms? At what cost? And why?
It will also provide guidance to agencies on the most appropriate approaches to collecting, storing, sharing and maintaining asset data, based on the needs of the various stakeholders involved in data-based decision-making.

500000 1824 months Full NCHRP
A Guide for Creating Visualizations

A visualization can be “effective” in several ways: providing information, informing policy and decision making, and influencing behavior. There is little guidance on how to systematically evaluate a visualization’s effectiveness by either of these measures. This problem affects both transportation professionals and the traveling public – including movers of freight.
Even with clear visualizations providing insight – sophisticated “nuggets of truth” from vast amounts of information and solutions to vexing problems, there may be viewers who do not comprehend or respond. Developing a means to evaluate the effectiveness of visualizations deployed internally and externally would significantly enhance their value.
This research addresses this problem by: evaluating the effectiveness of noteworthy practices currently being pioneered by state DOTs that were documented, but not assessed, in previous NCHRP projects; addressing the new tools that have proliferated, such as Tableau, R, Infogram; and ultimately developing an easy-to-use guide to creating effective visualizations.

The object of this research is to develop an easy-to-use guide for evaluating the effectiveness of transportation visualizations that state DOTs can use to improve communication and decision-making. With this guide, state DOTs will have the tools to hone their message, manage the data overload that occurs in visualizations and impact travel behavior with effective visual data increasing safety, security and mobility.
The suggested tasks for this research are:
1) Research the essential components of what makes a visualization effective. Build off NCHRP 226 and 20-24(93)B(02). Evaluate the visualization techniques and practices documented in NCHRP Synthesis 52-16.
2) Create a guidebook that clearly communicates how to approach a new visualization and guide its creation.
3) Evaluate how to gain feedback on the effectiveness of a visualization in communicating information and influencing behavior, and also facilitates decision making. This could build off practices currently used for public service announcements (PSA).
4) Identify or develop noteworthy practices for evaluating the effectiveness of a visualization.
5) Create a Guidebook that provides state DOTs with options for evaluating the effectiveness of a visualization.
6) Integrate the two elements – creation and evaluation – into a guide that demonstrates the feedback loop of continuous improvement enabled by joining these two functions.
7) Establish an online case study website that showcases exceptional and innovative visualizations. This could include a category for the use of emerging data and emerging analytic capacity so state DOTs could maintain currency in innovative practices. The website would be updated by the TRB AED80 Visualization in Transportation Committee yearly by acknowledging award winning entries.

400000 24 months Full NCHRP
Developing a Robust Education, Training and Workforce Development Program for TPM and TAM

TAM and TPM provide the foundation for performance-based investment decisions in transportation agencies at the federal, state, and local levels. Despite the fact that many transportation agencies have embraced the implementation of robust TAM and TPM programs to support their stewardship responsibilities, these topics are not typically incorporated into traditional education programs. In many cases, practitioners working in these areas acquire the skills needed while working on the job or take advantage of training materials available through various sources with limited support. Challenges with attaining skills, building competencies in an organization are compounded by knowledge succession needs with an aging workforce, tighter budgets, and uncertain in-person opportunities during an on-going pandemic, as well as evolving career expectations from skilled candidates in a globally competitive digital economy. A more accessible, efficient and attractive landscape of offerings, programs and career paths are needed to tackle the spectrum of training needs and challenges for effective TAM and TPM.
This study will explore cross-functional, multidisciplinary competencies, training needs in the TAM and TPM areas so that funding can be sought to streamline usage of existing opportunities, better integrate TAM and TPM principles within available programs, identify new skills needs driven by emerging risks or advancing technology, develop new training programs and partnerships needed. This also includes gaining an understanding of flexible, inclusive career paths to support innovation and productivity while improving return on training investment in a time of economic recovery. The study will inform AASHTO and TRB committees of existing gaps in training and recommend a strategy for addressing the gaps through a separate research study.
It is anticipated that this scoping study would be part of a three-phase research project:
• Phase I: Scoping Study for Developing an Education, Training and Workforce Development Program for TPM and TAM (this project)
• Phase II: Prototype and Testing of TPM/TAM Education, Training and Workforce Tools and Resources
• Phase III: Formal Development and Ongoing Support of TPM/TAM Education, Training and Workforce Tools and Resources

Task Description

Task 1: Define TPM and TAM Training and Education Needs
• Conduct a contextual and comprehensive analysis of the training needs for practitioners in TPM and TAM.
• Assess the knowledge, skills, and abilities needed by practitioners to perform their jobs well.
• Consider delivery methods in addressing needs.

Task 2: Conduct a Gap Analysis
• Summarize available training programs/materials in the US and abroad (notably Canada, Europe, Australia and New Zealand) and through other resources.
• Identify gaps between desired outcomes and current outcomes from available training and education.

Task 3: Develop Recommendations
• Summarize the findings from task 1 and 2.
• Recommend strategies for addressing the gaps.
• Present findings and recommendation in a final report.
• Prepare a Research Problem Statement(s) to develop the recommendations.
• Meet with the project panel to discuss recommendations.
• Incorporate changes into a final version of the report.

Better define the needs for education, training and workforce development related to transportation asset management and transportation performance management. Develop resources as needed for the following sub-areas:
Education—Writing curriculum for undergraduate and graduate courses
Training—For DOT and MPO staff in-depth career training, NHI, etc.
Workforce Development—e.g., TC3

No more than 15 months to complete the scoping study.
Additional time needed to establish the project with NCHRP.

AASHTO Committee Support
ERM - Risk and Resilience Program to Support Development of a Highway Risk & Resilience Manual

The US experienced 308 weather and climate related disasters since 1980 exceeding $2.085 trillion in physical losses and the loss of 14,492 lives. Between 1980-2020 the average number of billion- dollar events per year was 7.1, that number ballooned to 16.2 billion-dollar events per year on average between 2016-2020 (adjusted for Consumer Price Index). The most billion- dollar weather and climate related disasters occurred in 2020, with 22 billion-dollar events totaling $246.7 billion in losses and 553 deaths. As of September 2021, the current year is looking to break the record set in 2020 having experienced 18 billion-dollar events to date (Billion-Dollar Weather and Climate Disasters: Overview | National Centers for Environmental Information (NCEI) (noaa.gov) ). In addition, the recently published TRB Consensus Study on Resilience Metrics notes that 6 of the world’s 10 most costly natural disasters in 2020 occurred in the United States (TRB Resilience Metrics Consensus Study, 2021). With this level of impact on the nation’s infrastructure, transportation agencies need consistent methods to support decision making to address stressors such as extreme weather and climate change in planning, design, maintenance, and operations.
The TRB Resilience Metrics Consensus Study 2021 calls for the establishment of standard methods of analysis to support benefit-cost assessment to allow agencies to understand the “buy-down” of risk from capital and maintenance investments. In addition, the study calls on Congress to consider requiring that all federal funding candidate projects that involve long-lived assets requirement undergo well defined resilience assessments that account for changing risks of natural hazards and environmental conditions stemming from climate change. The proposed project will allow AASHTO and TRB to develop industry adopted standard methods of quantitative analysis in lieu of federally developed methods.

Proposed Program of Projects

A concerted level of commitment from AASHTO and TRB is needed to develop a single manual to serve as the “go-to” for quantitative analysis of financial risk to agency assets and the traveling public from extreme weather and climate change. Like the Highway Capacity Manual and the Highway Safety Manual, a single resource is needed to ensure consistent methods of analysis between projects and agencies, and to ensure adoption of robust quantitative methods to support benefit-cost analysis and decision making. A single manual will allow state, MPO, federal agencies to compare project investments on a level playing field – same models, same assumptions, same thresholds of performance. A single manual will also support the instruction of how to address extreme weather and climate change in planning and engineering curriculum at Universities ensuring future Transportation Professionals are equipped with the skills needed to support the adoption of such methods into practice. Finally, a single manual will allow the incorporation of extreme weather and climate change considerations in Professional Engineering examinations to further institutionalize these concepts in future design and decision making.
This program will establish a series of individual research projects to support the development of a Highway Resilience Manual born out of NCHRP 23-09, Scoping Study to Develop the Basis for a Highway Standard to Conduct an All-Hazards Risk and Resilience Analysis and NCHRP 20-123(04) Development of a Risk Management Strategic Plan and Research Roadmap. Similar to other NCHRP research programs such as NCHRP 20-102, Impacts of Connected Vehicles and Automated Vehicles on State and Local Transportation Agencies, this is a long-term research program that will result in an industry “standard” for all-hazards risk and resilience analysis for use in design, maintenance, and planning decision-making. In addition, the program of projects will address required data sources and work to field test the Highway Risk and Resilience Manual with a range of agencies as described in the following three phased approach and in the draft Research Roadmap:

  1. Phase I: Development of Highway Risk and Resilience Manual. An anticipated 3-year phase consisting of multiple projects and costing approximately $3,500,000. Year 1 estimated to cost $1,500,000 with years 2 and 3 estimated at $1,000,000 each. There would be multiple projects under this phase including five projects identified through NCHRP 23-09:
    • Establish quantitative assessment methodology for top priority threats and assets (e.g., culverts and flooding)
    • Develop historical data capture process quantitative analysis methods
    • Develop quantitative resilience assessment methodology
    • Establish performance metrics and thresholds for resilience and risk tolerance; provide guidance on reducing risk and improving resilience
  2. Phase II: Implementation of Highway Risk and Resilience Manual. A 2-year, $2,000,000 program that would implement/apply the Highway Risk and Resilience Manual to 8-10 transportation agencies. A few potential projects in Phase II are outlined here:
    • Create internal and external agency communication and collaboration practices to incorporate Highway Risk and Resilience Manual in decision making
    • Develop capacity building plan to identify institutional and educational needs to incorporate Highway Risk and Resilience Manual into practice
    • Pilot test Highway Risk and Resilience Manual
    • Identify institutional organizational and procedural (IOP) changes and implementation strategies for the successful adoption of Highway Risk and Resilience Manual
  3. Phase III: Development of Tools and Resources to Support the Highway Risk and Resilience Manual. A 2-year $1,500,000 effort to create automated, geospatial models that transportation agencies could use to implement the Highway Risk and Resilience Manual across networks or the transportation system.
    • Develop stand alone, open source computer script that can work within a GIS environment to automate Highway Risk and Resilience Manual calculations across multiple assets and threats in a geo-spatial setting
    • Develop spreadsheet-based tools to automate Highway Risk and Resilience Manual calculations across multiple assets and threats in a spreadsheet application
    • Selecting Performance Metrics for Evaluating Effectiveness of Risk Mitigation o Incorporating Risk Management into Maintenance Practice
    • Developing New Performance Metrics for Risk Management
    • Assessing the Impact of Common Risks on Federal Reporting Metrics

Transportation owners and operators are responsible for the transportation system and the delivery of a range of services and functions through the management of that system. There are inherent risks involved with the management of these systems, notwithstanding aging infrastructure, and fiscally constrained resources. Many agencies are moving toward performance-based resource allocation while simultaneously recognizing risks that may undermine their strategic goals. As these risks affect every component of a highway system to a greater or lesser extent, accurately accounting for and addressing these risks within a highway agency’s enterprise-wide management program is the goal which currently lacks analysis tools.
Investing in risk and resilience strategies and enhanced recovery to reduce or eliminate the impact of external events is also paramount to ensure a thriving, viable transportation system. Risk management requires the identification and assessment of potential threats and hazards, asset vulnerabilities from applicable threats, an evaluation of potential mitigation actions to reduce risk, a clear and easy to implement process to prioritize mitigation activities, and investment that aligns with agency strategic and performance goals. Asset management and more recently performance management, has been an ongoing focus of many research efforts. However, guidance for analytical risk assessment methods to support risk-based asset management processes is lagging. Risk assessment processes, methods, and tools are needed to integrate risk management into asset and performance management systems. In addition, an understanding of the relationship between risks and system resilience is lacking.
Basics needed:
• Adopted definitions
• Standard framework for quantitative risk based on expected financial losses to agency and traveling public
• Establishment of performance metrics for risk and resilience
• Suggested risk tolerance and resilience performance targets that agencies can customize
• Methods to incorporate climate projections into decision making
• Methods to analyze both deterministic and probabilistic input data (500-yr flood versus climate scenarios)
Future research can expand threats analyzed; assets analyzed; climate projections; life cycle cost; remaining life consideration of assets; environmental impacts, etc.

Research Tracks:
Threat Identification and Modeling
Asset Vulnerability from Identified Relevant Threats
Asset Characteristic
Establishing Risk and Resilience Performance Metrics and Levels of Performance
Intersection between Risk/Resilience Assessment and Performance Management
Intersection between Risk/Resilience Assessment and Asset Management
Education and Outreach

Full NCHRP
BIM for Infrastructure: A Focus on Asset Management

Research is needed on the importance of data governance from the conception of a project’s data dictionary, through the inventory and condition assessment and continuing with the data management and integration into transportation asset management systems. A question worth pursuing is whether all aspects of language, wording, numbering, and measurement units should be standardized or if template guides could be developed for each agency to standardize their unique asset type requirements, but in a nationally recognized format for easy translation.

After establishing governance routines for asset data collection and management, the next phase of research would involve the security aspects of an agency’s data as well as the quality assurance measures applicable to grow confidence in the data’s quality. A full review of best practices for data security procedures could break the barrier of IT to asset manager. Additionally, once definitions and governance procedures are established, the quality assurance process becomes more stream-lined and gives better confidence to the decision makers.

● Guidance on establishing BIM data governance and quality standards to support asset management.
● Recommend standards for data transfer between data collection and asset management systems.
● Develop maturity scales for BIM implementation and establish appropriate maturity level for integration of TAM
● Research on BIM applications to support DOTs' data governance specific to the collection of data by one part of the agency can be used directly by other parts of the agency
● Evaluate cost effectiveness of collecting and managing data through BIM at a sufficient level of quality.
● Aligning the focused but detailed project-level data with network-wide but less detailed TAM data.

TRB Research Ideas – Data Quality/Standardization
• Data quality and confidence
• standardize terminology between different systems so singles source can inform GIS/500 reports/DELPHI/FMIS etc. so reports all use the same words or numbers the same way
• Updated asset type definitions and extraction methodologies.
• Performance Metrics for Assets other than pavement and bridge, i.e.. signals, signs, barriers, culverts
• Asset ratings biases, potential to rate lower to obtain funding

TRB Research Ideas – Data Governance
• Our largest challenge is data governance, feature collection and maintaining asset/inventory data
• Data governance is still looming large from an implementation perspective
• Data history, implementation and its security (both cyber and other forms of security)

Full NCHRP
Best Practices of Linking Required Planning/Performance Documents/Processes

A State DOT Transportation Asset Management Plan (TAMP) documents the investment strategies and expected outcomes from various asset classes, starting with the bridges and pavement of the National Highway System. The State DOT TAMP does not replace any existing state transportation plan (e.g., LRTP, freight plan, operations plan, etc.) but does provide critical inputs to existing plans, linking capital and maintenance expenditures related to asset preservation.
At the same time that state DOTs were developing their TAMPs, states also implemented a performance-based planning and programming approach, which applies performance management principles to transportation system policy and investment decisions. Performance-based long range transportation plans, statewide transportation improvement programs (STIPs), metropolitan planning organization (MPO) TIPs, and other performance-based plans like state freight plans must define key goals and objectives and establish measures to analyze short-, medium, and long-term implementation progress.
This Synthesis should review the advancement of State DOTs and MPOs to implement performance-based planning and programming with the help of implementation plans like the TAMP and documented processes for planning, investing, and evaluating performance outcomes.

The objective of this synthesis is to identify best practices from State DOTs of how to improve processes through required performance-based planning and programming document development and implementation through exploring:
• How State DOTs and MPOs are linking and including asset management decisions in their traditional planning processes;
• How agency’s integrate asset management project identification and prioritization into required planning processes;
• Gap analyses of where State DOTs and MPOs identify a need for more guidance on how to connect required performance-based documents to programming decisions;
• What management systems are in use to help agencies implement risk-based asset management with performance objectives and targets.
• Examples of where MPOs work in partnership with State DOTs to mobilize National Highway System partner owners (local agencies) to plan/program to performance targets.

Question whether this topic should wait until the results of NCHRP Project 08-113 Integrating Effective Transportation Performance, Risk, and Asset Management Practices are released. They are covering similar topics, though the current research statement seems to be more focused on the federal TAMP/ TPM while 08-113 is about AM/ Perf Mgmt more generally

Synthesis
Synthesis on Advancing Technology in Asset Data Collection

Emerging technologies hold the promise of transforming asset data collection for transportation asset management such as the use of drones for inspections, LiDAR field data collection, continuous monitoring of real-time sensor data, and more. While the technology has been transforming, MAP-21 and the Fast Act jump started at many agencies in attaining an inventory of infrastructure assets and transportation data. At the same time, accessibility and affordability to collect high volumes of asset inventory data, such as LiDAR point cloud data, present the problem of how agencies can visualize and manage such large amounts of data and integrate the many layers for each transportation asset management plan. Now that the need for such data is federally recognized, further research is needed to understand what the latest technologies for asset analysis can offer an agency as well as how frequently that information needs generated.

Research is needed in the following areas:
● Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
● What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
● Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

• Identify tools (online forum, listserve, or others) to facilitate the community of practice.
• Create practitioner consortium database
• Webinars to build awareness
• Facilitation/moderation to foster the community of practice
• Report on lessons learned and successful practices identified through the community of practice
• Examine the consistency of the underlying data that goes into bridge/pavement data collection

This project proposes the establishment of a community of practice for asset management data collection rather than the creation of a traditional research report.
• The mission of the community of practice will be to articulate strategic, operational and tactical business needs relevant to emerging technologies for asset data collection and to recommend improvements to business processes, data, and information systems to meet the highest priority needs.
• The community of practice will seek to connect the experts and build the network to move the state of practice forward more effectively and efficiently
• The project will seek to foster the community of practice so that it is sustainable beyond the conclusion of this research

Synthesis
Implementation of NCHRP 23-06: A Guide to Computation and Use of System Level Valuation of Transportation Assets

Determining the value of a transportation organization’s physical assets is important for both financial reporting and transportation asset management (TAM). In financial reporting, determining asset value is a fundamental step in preparing a balance sheet for financial statements to inform regulators and investors. For TAM, presenting data on the value of physical assets, such as pavement, bridges, and facilities, communicates what an organization owns and what it must maintain. Furthermore, information about asset value and how it is changing can help establish how the organization is maintaining its asset inventory and helps support investment decisions.

Calculating asset value for TAM is not simply good practice; it is also required of state Departments of Transportation (DOT) by Federal regulations. Title 23 of the Code of Federal Regulations (CFR) Part 515 details requirements for State DOTs to develop a risk-based Transportation Asset Management Plan (TAMP). The TAMP must include a calculation of the value of National Highway System (NHS) pavement and bridges, as well as the cost to maintain asset value.

Recently NCHRP Project 23-06 was performed to develop guidance for calculating asset value to support TAM applications. This research resulted in the development of the Asset Valuation Guide. This document is intended as a companion publication to the Transportation Asset Management Guide published by AASHTO. The Guide is accompanied by a web tool with an online version of the guidance. The guidance was developed to provide immediate support to highway and transit agencies developing their 2022 TAMPs, and to provide continuing support for other TAM-related applications.

The objective of this implementation project support further testing and use of Asset Valuation Guide developed through NCHRP Project 23-06. This project will aid a set of transportation agencies in implementing the asset valuation guidance. A set of case studies will be developed based on the agency implementation efforts. Details on the case studies will be added to the web-based version of the asset valuation guidance and subsequent versions of the Asset Valuation Guide. Further, the web and printed versions of the Guide will be revised to reflect the additional experience gained from the case studies.

To support accomplishing the research objectives the effort will incorporate the following activities at a minimum:
• Delivery of a set of workshops to review and summarize the Asset Valuation Guide.
• Identification of a set of six transportation agencies to participate in implementation of the asset valuation guidance.
• Application of the asset valuation guidance for the selected set of agencies, resulting in calculation of asset value by asset class, the cost to maintain asset value and related measures such as the Asset Consumption Ratio, Asset Sustainability Ratio and Asset Funding Ratio.
• Illustration of how information on asset value can support improved TAM decisions.
• Refinement of the Asset Valuation Guide (printed and web versions) based on the results of the case studies.
• Development of supplemental tools and worksheets to assist in calculating asset value to support TAM utilize the Asset Valuation Guide.

Implementation
Successful Practices for Managing Uncertainty: Lessons Learned from the Pandemic

Among the many difficulties raised by COVID-19, the pandemic does have the potential of affecting asset management practices in diverse ways. On the one hand, reduced traffic might reduce road maintenance costs; on the other hand, ordering more goods might increase truck traffic and thus increase deterioration. Even if deterioration were the same, the road agency would always have the option of utilizing a less expensive treatment alternative and thus reduce the capital needs and maintenance budget.

● Survey and interview State DOTs and others as to their practices during COVID. For example: observe their budget outlays, activities performed and data collection.
● Focus on uncertainty in general - such as funding uncertainty; the results could be utilized for good practices not just in times of widespread disease, but also for times of economic austerity such as a recession. Note: The visualization committee (AED80) has been kicking around a research idea related to how to VISUALIZE uncertainty. Could be a good opportunity to collaborate with that TRB committee. Anne-Marie McDonell and Matt Haubrich are both on AED80 so feel free to reach out.
● Potential to focus on risk management with respect to federal TPM target-setting (rather than risk management with respect to funding uncertainty).

Synthesis
Refinement and Evaluation of Policies, Procedures and Requirements Related to the National-Level Asset Management Performance Measures (PM2 Measures)

Evaluate and assess the existing national-level performance measure requirements for asset management at the state level to determine applicability and usability of PM measures in asset management decision making. As appropriate, provide recommendations and refinement of the performance measures for better use an application.

1. Evaluate current federal PM2 measures, both pavement condition measures and bridge measures, for performance thresholds, and overall performance measure with respect to: Consistency, Usefulness, and Alignment.

2. Identify and address in detail specific challenges for each condition measure for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 3. Provide recommendations to improve existing measures and/or identify metrics that better reflect conditions enhance decision-making taking into account not only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation.

NCHRP 20-24(20), 20-24 (97), 20-24 (127)
NCHRP 20-24(37): This project, Measuring Performance among State DOTs: Sharing Good Practices, put in place a foundation on which the first set of national performance measures were created. A similar program needs to established on which to further develop relevant national-level performance measures.

Full NCHRP
EDI (Equity, Diversity, and Inclusion) and Other Indicators to Improve TAM Impact and Outcomes

Investments in roadways have historically been focused on safety, mobility, and system preservation considerations. As our understanding of the impacts of roadway decisions mature, other factors such as socio-economic impact, sustainability, accountability, transparency, integrity, and innovation are increasing in importance by State Departments of Transportation (DOTs). Recently, strategic initiatives related to DEI are growing in importance and need to be considered in transportation investment planning. Advancing the understanding of DEI and other related indicators can help DOTs improve the impact of TAM investment decisions, especially to underserved communities.

The objective of this research is to produce guidance on how DOTs can improve the use of DEI and other related indicators in TAM investment decision making processes.

Tasks will include:
• Compile DEI and other related indicators for use in TAM decision-making
• Develop a framework for applying DEI and other related indicators in TAM decision-making processes, including:
o analysis activities to forecast impact
o scenario planning including identifying alternate investment options with an equity lens
o investment tradeoff decision-making
o community engagement activities including increasing the involvement of underserved communities.
• Develop additional quantitative and qualitative performance measures for asset management and planning that consider DEI and other factors in transportation investment decisions
• Produce a summary of challenges, inherent inequities, and obstacles in asset management and planning activities in order to help transportation add value to underserved communities
• Develop guidance for transportation agencies to use the DEI and other related indicators to balance competing strategic objectives related to asset performance, safety, mobility, and DEI.

Note: Title formerly "Socio-Economic Indicators in TAM Processes"
See: FHWA TAM Expert Task Group summary of this topic and potential R&I-sponsored research effort addressing equity

Note: Some TAM processes do include related socio-economic indicators, including NPV, ROI, IRR, FYRR and also social indicators such as population influenced, percentage of tax revenue utilized, revenue sources and the implied equity considerations (including racial and social equity). It is suggested to examine the indicators utilized in different states, and whether the socio-economic indicators are part of the decision making process.

Full NCHRP
TPM – Analysis and Assessment of the National Performance Management Data

MAP-21 and the FAST Act laid the groundwork for a comprehensive national-level performance management framework. The first four-year reporting period began on January 1, 2018 and ends on December 31, 2021 and will result in the first complete set of consistent national-level performance management data. This will result in a unique opportunity to conduct the first analysis and assessment of this unique data set as well as combined with other data sets to tell a more complete and consistent state DOT performance management story.
An initial assessment of these data sets has been conducted. In 2020, FHWA sent out letters to each state DOT indicating whether they had made significant progress towards their target achievement for the five safety performance measures. And, in 2021, FHWA sent out subsequent letters about making significant progress with respect to the asset measures and system performance measures. AASHTO obtained copies of these data and conducted its own preliminary analysis of the data to better understand:
1. How far off were the targets from the actual numbers?
2. What is the impact of those states that did not make significant progress?
3. How many states' targets showed improvement?
4. What kind of targets did states establish?
5. What is the correlation between target setting technique and making significant progress?
6. Are there other techniques that could be used to determine making significant progress?
The results of this preliminary analysis was insightful and revealed a lot of good information. For example, a number of visuals were developed to show the how impactful missing a target by less than 0.05% can have on a state DOT not making significant progress. It also demonstrated the complexity associated with understanding what it meant for a state DOT to meet or exceed a target. However, this preliminary analysis, conducted by AASHTO staff and consultant support through the TPM Pooled Fund project, was very limited due to the resources available.
In fall 2021, the Committee on Performance-Based Management leadership group agreed that a more robust and extensive analysis is warranted that includes not only an analysis and assessment of the data, but recommendations on future capacity building activities to support state DOTs in the future as well as an assessment of future performance measures that may be better at telling the national TPM story.

Approach

This research will conducted in four parts.
Part 1 will focus on the detailed analysis of each of the 17 performance measures for the three federal performance measurement areas (safety, asset condition, and system performance). The analysis will primarily include the four years of performance measurement data reported by state DOTs as part of the federal performance management requirements for the first reporting period which goes January 1, 2018 through December 31, 2021. This data is consistent among all of the states and for all of the performance measures resulting in important consistency among the performance measures.
For each of the performance measurement areas, the following will be conducted:
• Data Analysis—Analysis of the performance measures data to better understand how states are performing. All of the data should be made available through the
• Target Setting Approach—Analysis of what type and how state DOTs established targets.
• Target Achievement—Assessment of the extent to which state DOTs achieved their targets.
All of this data and analysis, where applicable, should be made available through the AASHTO TPM Portal Benchmarking website at https://benchmarking.tpm-portal.com/.
Part 2 will focus on developing a comprehensive performance management story which provides an authoritative assessment and narrative of how state DOTs are performing. The performance management story should be based upon the following three categories:
• Funding Sources—A detailed analysis and assessment of the funding sources that state DOTs use to fund transportation projects in their states. This should include an assessment at the individual state as well as at the national level.
• Project Selection Process—A summary of the approaches, frameworks, and techniques state DOTs use to identify projects to fund using their funding sources.
• Condition, Outputs, and Outcomes—Using the results of the Data Analysis from Part 1, provide a summary of the condition of critical assets, the type of outputs state DOTs are seeing through their project selection process, and the long-term outcomes of the project selection process.
The State DOT TPM Story should be made available through the AASHTO TPM Portal website at www.tpm-portal.com. The State DOT TPM Story should include a print version and interactive web-based version that can be reasonably updated as new data is made available.
Part 3 will focus on future capacity building activities and performance measures that could be used to better tell the national TPM story. First, based upon the results and insights gained from Part 1 and 2, needed capacity building activities will be identified and delivered as resources allow. These activities could include training programs offered through the AASHTO TC3 program, new/updated NHI training, or peer exchanges. The focus should be on how best to build the capacity of transportation agencies to deliver a performance-based management program gained from the insights and experiences of the first performance management reporting period.
Second, the final report will provide some conclusions on future performance measures, approaches, and technologies that could be used by transportation agencies to implement and deliver a performance-based management program. These recommendations should be based upon the insights and experience from the first performance management reporting period. It should reflect the idea that the performance management field is constantly changing and evolving, just as society and technology does, and that what and how we measure performance is dynamic.

The objective of this research is to prepare an authoritative analysis and assessment of the national performance management data and, based upon the analysis and assessment, to provide recommendations on future capacity building activities and possible new performance measures. There are three sub-objectives focused on:

  1. Analysis of the national performance management data for the three performance measurement areas (safety, assets, and system performance) will be conducted to better understand trends, target setting approaches, and target achievement by state DOTs; and
  2. Assessment of the performance management data that provides a comprehensive and compelling story on the results of the performance management provisions.
  3. Identification of future capacity building needs and performance measures.

Funding: $550,000 (estimated)
Phase 1: $255,000
- Safety (5 performance measures): $75,000
- Asset Management (4 performance measures): $60,000
- System Performance (8 performance measures): $120,000
Phase 2: $100,000
Phase 3: $150,000
Final Report: $45,000

TOTAL: $550,000

Full NCHRP
Impact of Incomplete/Missing Annual Pavement Condition Data and Proposed Mitigation Strategies

Due to external stakeholder requirements and expectations (e.g., MAP 21 and FAST Acts) as well as internal DOT uses, DOTs typically collect pavement condition data (i.e., roughness, cracking and rutting or faulting depending on the pavement surfaces) on an annual cycle. However, disruptions of typical agency activities related to COVID-19 have resulted in data collection challenges, focusing attention on potential impacts of missing a data collection cycle. DOT may also face unforeseen workforce, contracting, data collection or processing challenges or other issues which could result in missed pavement data collection. In these cases, DOTs would benefit from understanding the range of potential impacts as well as potential mitigation strategies available to address these issues. Furthermore, in times of reduced budget, DOTs may desire to reduce the frequency of data collection, however they should be informed of the potential impacts of that decision.

1. Evaluate the impacts of incomplete/missing annual pavement data collection to various aspects of agency asset and performance management, including technical considerations, such as network-level condition summary and performance forecast, maintenance, rehabilitation, and reconstruction decision-making, and condition deterioration and treatment improvement modeling.
2. Consider the effect of incomplete/missing data on the organization and processes, such as federal performance reporting and transportation asset management planning requirements, as well as impacts to other internal and external stakeholders and decision-making processes.
3. Analyze and derive recommendations on mitigation strategies that DOT could implement to minimize the impact of incomplete condition data.

Proposed research activities include:
1. Conduct a literature review to document:
○ DOT motivations and/or requirements for annual data collection.
○ Potential technical and organizational impacts or issues associated with missing an annual data collection.
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs known to currently (or in the recent past) complete pavement data collection on a 2 or more year data collection cycle.
2. Building from the literature review, survey State DOTs to capture:
○ DOT motivations and/or requirements for annual data collection
○ Potential technical and organizational impacts or issues associated with missing an annual data collection
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs that currently (or recently) collected pavement data on a 2 or more year data collection cycle
○ DOTs which have previously missed their established collection cycle
3. Conduct follow up interviews/surveys with DOTs that have longer collection cycles or which had previously missed an annual pavement data collection to understand perceived vs. actual impacts (both technical and organizational) and any mitigation strategies they employ.
4. Summarize literature review, survey results and follow up interviews to guide ongoing research activities
5. From a representative set of DOTs, collect available pavement condition and work history data, pavement deterioration and improvement benefit models
6. Utilize collected data to complete a statistical evaluation of the impact missing a year of data collection with respect to forecasted vs. actual performance results, and ability to identify priority investment areas based on previous year’s data collection, as well as other issues identified through the survey
7. Identify potential strategies to mitigate the impacts of incomplete condition data
8. Document survey results and evaluation outcomes
9. Produce a technical report summarizing impacts of, and potential mitigations for, missing an annual pavement collection cycle
Desired products include:
● Detailed listing of current requirements and/or motivations for annual pavement data collection
● Summary of perceived and actual impacts of missing an annual data collection against the listed motivations, supported with a statistical evaluation of actual DOT datasets where applicable
● A summary of potential mitigation strategies that can be employed to reduce the identified impacts

Recommended funding of $250,000 includes $225,000 for a half-time investigator for 18 months.

Programmed

Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: January 2021
End date: February 2022
Objectives

The objectives of this research are to develop guidance promoting the use of performance-based management strategies in maintenance and to present the resulting information in a format that is easily accessible to the maintenance community.


Project
Funding: $450,000
Funding Source: Full NCHRP
Start date: February 2021
End date: November 2020
Objectives

With the original project being completed in early 2020, the project panel has focused on both implementation of TAM Guide III and determining additional needs to make the TAM Guide III better based on the original literature research and review. An extensive literature search was conducted as a part of the original NCHRP project phase one work and the results generally incorporated and addressed in the new TAM Guide III; however, because of funding limitations, not all of the desired changes, updates, and enhancements could be addressed. Based on those limitations, the objective of this research is to provide further enhancements and content to the TAM Guide III.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: February 2021
End date: January 2023
Objectives

Based on these changing conditions, the objective of this research is to investigate the needs and benefits from incorporating TSMO assets in TAMPs. The study will develop a guide for state DOTs to facilitate the inclusion of TSMO in TAMP without disrupting the established and on-going planning process.


Project
Funding: $400,000
Funding Source: Other CRP
Start date: April 2021
Objectives

The objective of this research is to develop a “playbook” with standards, specifications, and process flows to help airport operators with the accurate and timely delivery of new and replacement asset information/meta data to key airport stakeholders responsible for tracking and maintaining airport assets.



Active

Project
Funding: $50,000
Funding Source: Other CRP
Start date: January 2019
End date: January 2020
Objectives

The objective of this research is to provide a state by state summary of pertinent laws and practices related to achieving a state of good repair for transportation assets and include a summary of decisions and the experiences of transportation agencies.

At a minimum, the following questions should be considered:
How are the assets being used?
When does it become prudent to close a portion of a transportation asset because there are insufficient financial resources to keep the asset safely open to the public?
When an asset repeatedly fails inspections and budgetary restraints persist, how is the decision made to close or shut down the asset?
If federal funds were used to build the failing structure, when does the funding agency weigh in on closure?
Does a closure, or approval of a closure, constitute a federal action requiring compliance with National Environmental Policy Act (NEPA)?
Will federal funds need to be refunded?
When the public is not allowed to travel over an asset that has been closed, is there exposure for failure to provide equal protection of the laws or failure to comply with civil rights protections?
What governance practices are in use?
What lessons can be drawn from current experience?


Project
Funding: $300,000
Funding Source: Full NCHRP
Start date: June 2019
End date: December 2020
Objectives

The objectives of this research are to (1) estimate the current and future effect of dynamic CAV technologies on roadway and TSMO asset maintenance programs; (2) develop guidance on existing and proposed measureable standards associated with roadway and TSMO asset maintenance for preventive, reactive, and emerging maintenance needs; and (3) identify the associated resource and workforce development needs.


Project
Funding: $45,000
Funding Source: Synthesis
Start date: September 2019
End date: December 2020
Objectives

The objective of this synthesis is to document DOT collaboration with MPOs relative to target setting, investment decisions, and performance monitoring of pavement and bridge assets for performance-based planning and programming. The synthesis will focus on DOT practices to initiate and facilitate collaboration with MPOs.


Project
Funding: $666,617
Funding Source: Full NCHRP
Start date: June 2018
End date: January 2021
Objectives

The objective of this research is to provide transportation agencies with practical guidance, recommendations, and successful implementation practices for

1. Integrating performance, risk, and asset management at transportation agencies;

2. Identifying, evaluating, and selecting appropriate management frameworks; and

3. Recruiting, training, and retaining human capital to support asset management and related functions.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: April 2019
End date: April 2021
Objectives

The objective of this research is to develop guidance coupled with one or more prototypical, analytical model(s) to support life-cycle planning and decision-making that applies life-cycle cost analysis as a component of a system-wide transportation asset management program. This guidance and associated analytical model(s) will apply quantitative asset-level, project-level, and network-level inputs to demonstrate methods for calculating life-cycle costs associated with alternative scenarios while taking into account preservation, rehabilitation, replacement, maintenance, and potential risk mitigation actions on a range of highway assets. To the degree possible, costs should reflect condition, risk and uncertainty, mobility, safety, and any other quantifiable aspect of transportation system performance. Although this research is targeted to state DOT highway assets within the overall transportation network, the research should also identify additional research necessary to expand the process to include other modes.


Project
Funding: $530,000
Funding Source: Full NCHRP
Start date: February 2019
End date: April 2021
Objectives

The objectives of this research are to (1) assess the state of transportation agency practices regarding use of targets in their transportation performance management (TPM) decision making, monitoring performance results, and as necessary adjusting management strategies and desired target levels; and (2) develop resources that agency practitioners can use to implement and maintain a process of monitoring performance and making management decisions based on comparisons of targets and observed system performance. Such resources could include, for example, guidebooks, web-based publications, prototypical planning scenarios, interactive computational tools, and visualization tools.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: April 2020
End date: July 2021
Objectives

The objective of this research is to evaluate the business case for BIM in the United States by quantifying how adopting enterprise-wide BIM systems can provide increased agency efficiencies and foster advanced, comprehensive lifecycle management of enterprise assets.

The data for this research shall be gathered using domestic and international examples, with the findings targeted for the U.S. market and DOT stakeholders.


Project
Funding: $45,000
Funding Source: Synthesis
Start date: October 2020
End date: July 2021
Objectives

The objective of this synthesis is to document current state DOT practice and experience regarding collecting and ensuring the accuracy of element level data. The synthesis will also examine how DOTs are using the data from inspection reports.

Information to be gathered includes (but is not limited to):
• Practices for collecting element level data (e.g., collection software, nondestructive evaluation methods);
• Practices and methods for ensuring the accuracy of the data collected;
• DOT business processes that use element level data (e.g., project scoping, maintenance, bridge asset management modeling and analyses, performance measurement and reporting); and
• Aspects of DOT bridge management systems that use element level data (e.g., deterioration models, action types, action costs, decision rules, performance indices).


Project
Funding: $700,000
Funding Source: Full NCHRP
Start date: May 2019
End date: August 2021
Objectives

The objectives of this research for NCHRP 02-25 are the following:
1. To produce a roadmap of effective human capital strategies for state DOTs, identifying critical areas necessary in the future to attract, retain, and develop a sustainable, qualified transportation design, construction, and maintenance workforce;
2. To identify trends, policies, and processes critical for developing and maintaining an adaptive organizational framework that will attract, retain, and develop a qualified workforce beyond 2030; and
3. To prepare an evidence-based guide that transportation industry organizations may use when developing and establishing an effective human capital program for a qualified workforce into 2030 and beyond.
The scope will be limited to the transportation workforce in design, construction, and maintenance.


Project
Funding: $45,000
Funding Source: Full NCHRP
Start date: November 2020
End date: August 2021
Objectives

The objective of this synthesis is to document the various technologies used by DOTs to inspect highway infrastructure during construction and maintenance of assets.

Information to be gathered includes (but is not limited to):
• The technologies used for inspection of new and existing highway infrastructure assets (e.g., geospatial technologies, mobile software applications, nondestructive evaluation, remote sensing and monitoring);
• The different methods used to assess the viability, efficiencies, and return on investment (ROI) of inspection technologies;
• How information from these assessments is being used (e.g., for construction project management, to allocate resources, to determine condition of the asset).


Project
Funding: $600,000
Funding Source: Full NCHRP
Start date: July 2020
End date: November 2021
Objectives

The objective of this research is to develop a guidebook that state transportation agencies and others can use for calculation and communication of the value of transportation assets, and for selecting valuation methods to be used in transportation asset management. This guidebook, applicable to transit as well as highway modes, should (1) present a standardized terminology for discussing asset value, (2) describe currently accepted valuation methods, (3) describe the merits and shortcomings of these methods to produce measures of asset value useful for communicating among stakeholders and making resource allocation decisions, and (4) present advice on determining which valuation methods will be most useful in communication and decision-making for a particular agency.

The guidebook shall include at least the following components:
• Terminology and definitions of asset value (a) determined by generally accepted accounting principles, considering initial acquisition or construction costs and depreciation, (b) based on engineering estimates to replace the asset (considering age, condition, obsolescence, and the like), (c) based on estimates of revenues that could be produced from the assets if they were operated as a business venture, (d) based on socio-economic returns to a region’s economy and wellbeing, or (e) other relevant definitions;
• Current best practices for computation and presentation of each of the definitions of value listed above, presented in a manner that can be used by transportation agencies;
• Analysis of the advantages and shortcomings of the value methods as factors to be considered in system-level resource allocation decisions, for example, investment planning, maintenance budgeting, lifecycle management, and presentations for public discussion;
• Identification and description of needs for data and information for value computations;
• A capability-maturity model that an agency can use to characterize its valuation practices and needs and strategies for improvement;
• Advice on incorporating valuation estimates into the agency’s asset management practices.
NCHRP anticipates that the guidebook may be published by AASHTO. It should be compatible with print and web-based versions of AASHTO’s Transportation Asset Management Guide.


Project
Funding: $250,000
Funding Source: Full NCHRP
Start date: July 2020
End date: January 2022
Objectives

The objective of this research is to provide a scoping study for a transportation framework for all-hazards risk and resilience analysis of transportation assets. The scoping study must accomplish the following objectives:

1. Develop a comprehensive and consistent set of risk- and resilience-related terminology for transportation agency use; and
2. Provide a research roadmap for developing a framework for a quantitative all-hazards risk and resilience analysis of transportation assets, with its associated tools, and guidance on its application.

Accomplishment of the project objective(s) will require at least the following four tasks.


Project
Funding: $350,000
Funding Source: Full NCHRP
Start date: September 2020
End date: February 2022
Objectives

The objective of this research is to develop a guide for state DOTs and other transportation agencies on incorporating maintenance costs in a risk-based TAMP, including but not limited to the following:

1. A detailed presentation of procedures for identifying, collecting, and managing required data;

2. Using life-cycle planning tools and techniques to demonstrate financial requirements and cost-effectiveness of maintenance activities and preservation programs and the potential change in costs and liabilities associated with deferring these actions;

3. Formulating strategies that identify how to invest available funds over the next 10 years (as required by the TAMP) using life-cycle and benefit-cost analyses (and other applicable tools and techniques) to measure tradeoffs between capital and maintenance activities in alternative investment scenarios; and

4. Designing components of a financial plan showing anticipated revenues and planned investments in capital and maintenance costs for the next 10 years.


Project
Funding: $350,000
Funding Source: Full NCHRP
Start date: November 2020
End date: May 2022
Objectives

The objective of this research is to develop resources for state DOTs and other transportation organizations to help them explain the value of investing in resilience throughout the life cycle of planning, engineering, design, operations, construction, and maintenance activities.

The resources should provide tools for state DOTs to (1) build the business case for investing in resilience strategies and (2) develop communication strategies to make the public and stakeholders aware of the importance of resilience as part of the state DOT's overall mission. This project should consider the diversity of resiliency issues among state DOTs and agencies.

Accomplishment of the project objective will require at least the following tasks.


Project
Funding: $800,000
Funding Source: Full NCHRP
End date: July 2022
Objectives

The objectives of this project are (1) to develop a playbook to support emergency management program review and development for state transportation agencies and (2) to develop and execute a deployment strategy to familiarize the affected transportation agencies of every state with the playbook and supporting emergency management materials. The playbook and related products and activities should encompass state DOTs, public transportation systems, and other transportation agencies under state control or influence (i.e., state transportation agencies).


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: June 2020
End date: September 2022
Objectives

The objective of this research is to develop and disseminate a practitioner-ready guidebook for state DOTs that is focused on methods for the target-setting component of transportation performance management. The guidebook will provide information on selecting effective methods that use both qualitative and quantitative sources to establish performance targets. The guidebook will also address how to re-evaluate targets, taking into account unforeseen changes impacting the transportation system, performance data, and performance reporting requirements.


Project
Funding: $370,000
Funding Source: Full NCHRP
Start date: August 2020
End date: February 2023
Objectives

The objectives of this research are to (1) develop guidelines for the applications of RFID and wireless technologies for highway construction and infrastructure asset management and (2) plan and conduct a workshop to introduce the proposed guidelines to an audience of DOT staff and other stakeholders. At the minimum, the research shall include readiness assessment of RFID and wireless technologies for different applications and implementation requirements.



Recent

Project
Funding: $125,000
Funding Source: Full NCHRP
Start date: August 2018
End date: December 2019
Objectives

The NCHRP 20-24 Task 124 Performance Management Reporting Peer Exchange was held on Tuesday October 16th and Wednesday October 17th, 2018 at the Hall of States in Washington D.C. Representatives from 18 state DOTS, the Federal Highway Administration (FHWA), the American Association of State Highway and Transportation Officials (AASHTO) and the Transportation Research Board (TRB) attended. Participants were subject matter experts in performance management, pavement management and communications. The goal of the Peer Exchange was to help DOTs develop a toolkit and strategies for communicating the difference between state and Federal pavement performance in a consistent narrative. While this Peer Exchange focused on pavement performance, the process can be used as a framework to develop strategies to help states communicate other performance measures. A toolkit and summary are available in addition to the final report.



Project
Funding: $500,000
Funding Source: Full NCHRP
End date: May 2019
Objectives

This report presents guidance and examples for selection of peer groups to ensure that benchmarking is effectively applied to enhance transportation system performance. The report includes practical guidance on how transportation agencies can undertake benchmarking to improve system performance management practices and highlights applications of the guidance in two specific components of system performance, for active (that is, non-motorized) transportation and environmental impact.



Project
Funding: $45,000
Funding Source: Synthesis
End date: November 2019
Objectives

This synthesis report documents agency practices, challenges, and successes in conducting automated pavement condition surveys. The report also includes three case examples that provide additional information on agency practices for conducting automated pavement surveys.



Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: February 2017
End date: March 2020
Objectives

The objective of this research was to develop guidance (tools, procedures, and policies) for identifying, evaluating, and communicating multimodal transportation investment right-sizing scenarios. Although agencies are generally equipped to assess investment strategies, sufficient guidance is not readily available on how to identify and assess right-sizing or disinvestment scenarios in ways that clearly explain decisions associated with resource tradeoffs and constraints and how these decisions impact overall system resilience and sustainability. Outcomes of this research should enable agencies to answer questions such as, “Why are we spending more or less on (or eliminating) a given asset; and why is that a good decision given the functional requirements of the broader transportation system”? In response to this objective, the product of this research should be guidance for practitioners to implement and communicate right-sizing methods, applicable to individual projects and system-wide investment strategies. This guidance also defines and identifies additional components that can or should be encompassed by the concept of “right-sizing” as well as present a set of practical approaches for measuring and evaluating performance outcomes across a broad set of investment options.



Project
Funding: $350,000
Funding Source: Full NCHRP
Start date: May 2016
End date: January 2019
Objectives

This report presents guidance for state departments of transportation (DOTs) and other agencies conducting financial analyses and developing financial plans to support efficient and effective management of the agency’s transportation assets.



Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: July 2016
End date: March 2019
Background

Moving Ahead with Progress for the 21st Century (MAP-21) and Fixing America’s Surface Transportation (FAST) Act, call for risk and performance-based asset management for bridges and pavements and encourage state transportation agencies to develop and implement transportation asset management strategies for all assets within the right-of-way. This study contributes to the body of knowledge going beyond the initial steps of Geotechnical Asset Management (GAM) and places emphasis on incorporating geotechnical assets into transportation asset management. The objective of this research is to produce a manual for developing and implementing a geotechnical asset management program. The manual provides plans and tools for a consistent management program that is flexible enough to meet the needs of agencies having varied levels of maturity as they integrate the geotechnical assets into their overall asset management programs.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: July 2016
End date: March 2019
Background

Moving Ahead with Progress for the 21st Century (MAP-21) and Fixing America’s Surface Transportation (FAST) Act, call for risk and performance-based asset management for bridges and pavements and encourage state transportation agencies to develop and implement transportation asset management strategies for all assets within the right-of-way. This study contributes to the body of knowledge going beyond the initial steps of Geotechnical Asset Management (GAM) and places emphasis on incorporating geotechnical assets into transportation asset management. The objective of this research is to produce a manual for developing and implementing a geotechnical asset management program. The manual provides plans and tools for a consistent management program that is flexible enough to meet the needs of agencies having varied levels of maturity as they integrate the geotechnical assets into their overall asset management programs.


Project
Funding: $398,300
Funding Source:
End date: March 2019
Objectives

This report extends and implements the results of NCHRP Report 806: Cross-Asset Resource Allocation and the Impact on System Performance. Case studies were used to illustrate key issues in implementing a cross-asset resource allocation approach, and the lessons learned were then used to improve the guidance and tools developed in NCHRP Report 806.



Project
Funding: $45,000
Funding Source: Synthesis
End date: May 2020
Objectives

The report is intended to help transportation agencies with building data sets and tools that support the evaluation of damage to assets associated with emergency events and to illustrate methodologies that are being used to integrate these risks into asset investment decisions.



Project
Funding: $400,000
Funding Source: Full NCHRP
Start date: August 2018
End date: January 2021
Objectives

The objective of this research is to develop a guidebook presenting principles, organizational strategies, governance mechanisms, and practical examples for improving management of the processes for collecting data, developing useful information, and providing that information for decision making about management of the transportation system assets. The guidebook should assist practitioners addressing at least the following topics:

• Conducting agency self-assessments of information management practices (for example, a maturity model and leading-practices descriptions), using existing tools and techniques to the extent these are available;
• Exploring transferrable data and information management practices from a variety of sources—DOTs and others not necessarily restricted to domestic transportation agencies—that have demonstrated effective asset management;
• Considering how to incorporate evolving technologies and state-of-the-art management practices, for example by providing agencies with management scenarios and exemplary data models;
• Establishing organizational structure, personnel capabilities requirements, outsourcing policies and practices, and governance policies and procedures to support effective provision of asset management information;
• Assessing options for staff development, outsourcing, and other strategies for ensuring the agency has appropriate capability and capacity for asset information management; and
• Developing a management roadmap for implementing unified, enterprise-wide governance of asset data and information, from initial project development through transportation asset and performance management.


Background

State departments of transportation (DOTs) and other transportation agencies produce, exchange, manage, and use substantial quantities of data and information for project development and subsequent management of the system assets for which they are responsible. These agencies devote considerable resources to data collection and storage and often face challenges such as duplicating effort or gaps in data collected by various organizational units; ensuring that data sources are well documented and information is current; and providing the people responsible for planning, design, construction, and operations and maintenance of system assets with access to reliable current information for decision making.

Continuing rapid evolution of data and information technologies presents challenges as agencies seek to ensure that the transportation system delivers high performance and the agency functions effectively and efficiently. Remote sensing, Lidar, GIS, 3-D graphic displays, and virtual reality (to name a few of the newer developments) are supplementing or replacing data acquisition and information management practices once based on physical measurements and storage and display in large-format print media. Many agencies must deal with legacy data while avoiding obsolescence in their management practices. Typically fragmented DOT business practices and the decades-long processes of asset development and life-cycle service have produced disparate data sets that are poorly suited to effective long-term system asset and performance management.

Efforts are being made to address these problems. The American Association of State Highway and Transportation Officials (AASHTO) for example has developed a set of Core Data Principles (https://data.transportation.org/aashto-core-data-principles/) for transportation data. Ongoing research sponsored by the Federal Highway Administration (FHWA) will provide an analysis of the civil integrated management (CIM) data practices. Guidance produced by NCHRP, AASHTO, and FHWA addresses transportation asset management, information management, and data self-assessment (data value and data management)—see Special Note B. However, additional research is needed to provide agencies with guidance on opportunities for improving their information acquisition and management; data governance and maintenance workflows; human and business-support resources needed for data and information management; and procedures for assuring that reliable information for effective asset management is available when and where it is needed.


Project
Funding: $100,000
Funding Source: Full NCHRP
Start date: April 2019
End date: January 2021
Objectives

The objectives of this research are to document (1) the state of practice within state DOTs as they implement these new requirements and (2) the impacts of implementation to date on asset condition, safety performance and the investment of federal transit funds. This research will provide states with information that will help them evaluate the effectiveness of their efforts to date and refine or adjust their implementation.


Background

On July 16, 2016 FTA issued the final transit asset management rule and an associated final notice regarding NTD reporting. State DOTs and their subrecipients have specific obligations under the rule and notice. On August 11, 2016, FTA issued the public transportation safety program final rule. This final rule in combination with the yet to be released final rule on public transportation agency safety plans and the final national public transportation safety plan, will create new obligations for State DOTs and their subrecipients. The Transit Asset Management (TAM) Plan rule and the Transit Agency Safety Plan rule are aimed at facilitating improvement in transit asset condition and safety performance.


Project
Funding: $400,000
Funding Source: Other CRP
End date: August 2019
Objectives

This guide to building information modeling (BIM) applications for airports presents guidance for evaluating the business case of applying and implementing BIM.



Project
Funding: $800,000
Funding Source: Full NCHRP
End date: July 2022
Objectives

The objectives of this project are (1) to develop a playbook to support emergency management program review and development for state transportation agencies and (2) to develop and execute a deployment strategy to familiarize the affected transportation agencies of every state with the playbook and supporting emergency management materials. The playbook and related products and activities should encompass state DOTs, public transportation systems, and other transportation agencies under state control or influence (i.e., state transportation agencies).


Background

There is a need for a strategy-driven, actionable guide—a playbook—that, with incidental implementation support, will help emergent and part-time transportation emergency managers to understand, plan, and implement an emergency preparedness program that fits their agency’s needs, capabilities, and challenges. Such a playbook will serve as a simple, practical, and comprehensive emergency preparedness program development guide for transportation emergency managers; be generally applicable to all transportation emergency operations centers (EOCs); and be consistent with ICS/NIMS/HSEEP doctrine. A transportation-specific playbook will help close the gap in transportation emergency preparedness and enable quicker and more effective uptake of valuable scenario-based training and exercising tools that help organizations apply prerequisite planning and program development.

Translating strategy from the playbook to the real world (how to do it) is complex, as states vary in how they organize their activities. This project will develop and execute a strategy to effectively bridge the gap between all-hazards emergency management research and state transportation agency practice to improve state transportation agency responses over a broad continuum of emergencies affecting the nation’s travelers, economy, and infrastructure.


Project
Funding: $100,000
Funding Source: Other CRP
Start date: February 2016
End date: September 2017
Objectives

The objective of this research is to develop a recommended Second Edition Guide for use by state transportation agencies in planning and developing their organizational functions, roles, and responsibilities for emergency response within the all-hazards context of the National Incident Management System (NIMS). The Second Edition Guide should be suitable for adoption by the AASHTO Special Committee on Transportation Security and Emergency Management (SCOTSEM). The updated Guide should reference the latest state of the practice and guidance in emergency management. This effort would include guidance from USDOT, FHWA, AASHTO, FEMA, TSA, DHS, and TRB on emergency management from a state-level DOT perspective. For example, information such as found in the National Disaster Response Framework; how response impacts short- to long-term recovery; pre-disaster planning for post disaster recovery; and efforts to include resilience and sustainability should all be looked at and addressed in the document.


Background

The 2010 Guide replaces a 2002 document, A Guide to Updating Highway Emergency Response Plans for Terrorist Incidents (available on the AASHTO website at http://scotsem.transportation.org/Documents/guide-ResponsePlans.pdf), which was released following the terrorist attacks of September 11, 2001, and the subsequent anthrax attacks.
In addition to the introduction, background, and institutional context for emergency response planning, the 2010 Guide has two major sections:
Sections 3-5: Design an Emergency Preparedness Program—this contains a program-level review of the all-hazards approach to emergency management, which will help transportation agencies assess their plans and identify areas needing improvement.
Section 6: Resource Guide—this contains guidance on organizational, staffing, and position decisions; decision-making sequences; a full emergency response matrix; and a purpose and supporting resources for action reference matrix.


Project
Funding: $0
Funding Source:
End date: March 2018
Objectives

The objective of this research is to develop a recommended second edition of Security 101 for use by transportation personnel without a security background whose work requires them to address, perform, or supervise security or infrastructure protection activities as a part of their overall job responsibilities. The updated Security 101 should be suitable for adoption by the AASHTO Special Committee on Transportation Security and Emergency Management (SCOTSEM). The updated Security 101 should reference the latest practice and guidance in infrastructure protection encompassing cyber and physical security. This update would include guidance from USDOT, FHWA, AASHTO, APTA, FTA, FEMA, TSA, DHS, National Institute of Standards and Technology (NIST), International Organization for Standardization (ISO), and TRB. The work will update fundamental definitions for: (1) surface transportation physical and cyber security; (2) all-hazards planning; and (3) resilience of transportation operations in the post 9-11 environment. Emphasis will be placed upon expanding the Security 101 products to capture the current practice and guidance in relation to recently developed:
• Risk management and assessment processes
• Standards, guidance, and tools
• Technologies for transportation infrastructure protection
• Staffing models and deployment methods
• Design build and structural improvement criteria
• All-hazards resource acquisition, budgeting, and allocation
• Security and emergency management implementation methods and procedures
• Legal issues associated with security management
• Employee training requirements


Background

Since publication of Security 101, there have been both significant changes and a substantial increase in knowledge about surface transportation security. The decade-long effort to improve the state of security and emergency management practice in the transportation industry has produced new strategies, programs, and ways of doing business that have increased the security of our transportation systems as well as ensured their resiliency. Research is needed to update Security 101 to reflect the changed circumstances and to include cyber-related information.


Project
Funding: $400,000
Funding Source: Full NCHRP
End date: July 2018
Objectives

The objective of this research was to develop guidance for transportation decision makers to incorporate freight, transit, and incident response stakeholders into the integrated corridor management (ICM) process. ICM can range from simple to sophisticated and may continually change. The research will make use of existing FHWA and SHRP2 efforts, incorporating these and other efforts as needed. The guidance should address a broad range of operational and efficiency issues, including documented characteristics and potential approaches related to implementation of the ICM strategies.




Project
Funding: $250,000
Funding Source:
End date: December 2018
Objectives

The objective of this research is to develop a guide to bus transit service reliability. The guide will include a toolbox of resources that may be used to diagnose and manage bus transit service reliability and will describe benefits, costs, and outcomes of potential policies, strategies, and actions.



Project
Funding: $45,000
Funding Source: Synthesis
Start date: October 2019
End date: May 2021

Project
Funding: $300,000
Funding Source: Other CRP
End date: June 2019
Background

This guide helps agencies to incorporate equity into their transportation plans through a five-step framework for conducting equity analyses. The five steps are: identifying populations for analysis, identifying needs and concerns, measure impacts of proposed agency activity, determine if impacts are disparate or have adverse effects, and develop strategies to avoid and mitigate inequities. Though intended for Metropolitan Planning Organizations (MPOs), this guide is also applicable to transit agencies, state DOTs, and other transportation agencies that seek to address equity in their plans, programs, and policies.


Background

NCHRP Synthesis 546: Use of Weigh-in-Motion Data for Pavement, Bridge, Weight Enforcement, and Freight Logistics Applications documents how DOTs incorporate weigh-in-motion data into such applications as bridge and pavement design and management, load ratings, weight enforcement support, and freight planning and logistics.


Project
Funding: $400,000
Funding Source: Full NCHRP
Start date: April 2018
End date: October 2020
Objectives

The objectives of this research were the following:
1. To develop a framework for identifying, collecting, aggregating, analyzing, and disseminating data from emerging public and private transportation technologies.
2. To outline a process for using this framework to help decision-makers incorporate data from emerging technologies into transportation planning and policy.


Background

The expanding deployment of emerging transportation technologies, including connected vehicles (CVs), automated vehicles (AVs), shared mobility, mobility on demand, and activities associated with smart cities and communities, has increased the need and demand for improved management of associated data. While existing transportation databases have sometimes been curated and analyzed for specific project purposes, improved collaboration is needed to inform state and local agencies of lessons learned and best practices, which often produce ”big data” at magnitudes not previously seen.

To demonstrate and build on these emerging technologies, a wide range of institutions, both public and private, have initiated and invested in major pilot programs. These efforts are also supported by U.S. DOT through several federal initiatives such as the following:

• CV Pilot Deployment Program,
• The Smart City Challenge,
• The Advanced Transportation and Congestion Management Technologies Deployment Program of FHWA

As these efforts continue to expand, the amount and quality of data surrounding the application of emerging technologies is also expanding. In response, an improved collaborative approach to data analytics has the potential to improve our ability to address transportation planning and policy questions critical to informed and effective decision-making at state and local public agencies.

State and local transportation agencies are eager to learn from the experiences of early adopters of changing and emerging transportation technologies. Formulating a framework that establishes specific procedures for identifying, collecting, aggregating, analyzing, and disseminating data should significantly contribute to effective transportation decision-making.


Project

Project