The page collects all research candidate statements that haven’t yet been programmed as projects. In the left column, you can browse all the unprogrammed candidate statements, including statements from previous years. You can compare these to the right column, which highlights the year’s research priorities, the current project pipeline, and completed research. Site administrators can select candidate statements for consideration in the next research year.
Keyword Search:


Filter candidates by the candidates' timeline target:

Show candidates related to:


Short-Term
Research Candidate Statement
Short-Term
Research Candidate Statement
Objectives

  • Seek better data from the private sector and third parties, and fuse this data with DOT data to generate new comparisons and insights.
  • Collect and develop datasets for mobility and traffic.
  • Explore the availability of new datasets and identify ways to use datasets with DOT data for calibration of QA/QC.
  • Compare the scope, availability, reliability, and accuracy of privately available transportation mobility and traffic datasets sold by companies such as INRIX, Teralytics, Streetlight, etc.
  • Update and improve data definitions, especially for traffic. (State DOTs often measure traffic in discrete measures like AADT, but people are increasingly using a blend of modes to move from origin to destination, and traffic data should reflect that.)

Champions
Alex Finch | Connecticut DOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

  • Understand state DOTs' rules governing their data sharing agreements and intellectual property
  • Explore agency methods and examples for monetizing data
  • Identify what IP exists for sharing and selling data
  • Find and highlight best-practices in multi-state data agreements
  • Understand what agencies and organizations are doing to support their data sharing agreements
  • Recognize what data should be collected, sought, and shared

Champions
Alex Finch | Connecticut DOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

  • Identify the best locations for AV deployment which would deliver equity for all communities
  • Understand the elements of equity surrounding AV and shared mobility deployment

Champions
Alex Finch | Connecticut DOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

The objectives of this research are to develop guidance in the following initiatives which can be used to develop effective risk visualization communication within DOT’s, with external agencies, and the public in the by performing study into the following initiatives:
1. Establishing intra-agency communication.
2. Establishing external partnerships and two-way communications channels with community organizations.
3. Crafting an effective visual, verbal, and written communication strategy with materials (ie., metrics, dashboards, regular reports) with a clear explanation of uncertainty.
4. Determining the appropriate message vehicle.
This research will examine current strategies and methods of risk visualization communication at various DOT’s. Internal communication, two-way communication channels with external organizations, associated strategies, and other aspects of communication in relation to risk visualization will be extensively explored.

Champions
Shaunna Burbidge, PhD | Avenue Consultants
E-mail
Patrick Cowley | Utah Department of Transportation
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Emphasis on developing tools and methodologies to document risk tolerance and acceptance parameters associated with taking risks. 

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Greater understanding of the elements of good organizational culture and how it can be applied to transportation agencies to achieve greater resiliency is needed. This research project would include identification of agencies that have had success in building resiliency and examine what elements of organizational change supported the successful resilience building. Research on sectors outside of transportation where resilience is important would be conducted to understand the organizational culture elements. The ingredients for building organizational culture to achieve greater focus on building resilience will be created for transportation agencies.

The proposed research be composed of the following components:
• Conduct a literature/practice review of the relevant information
• Identify organizational practices and determine how they can be generalized to support guidance
• Develop guidance for agencies
• Demonstrate/evaluate guidance through at least one case study
• Produce a final report including an executive summary

Champions
Deanna Belden | MnDOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Develop a means of determining the balance between program requirements that minimize the risks of fraud and/or of not meeting program goals with maximizing the benefits to the end users (i.e., the public).

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Develop a means of consolidating the many related local measures into a set of national measures that describes and monitors how well the national transportation system is meeting (or not meeting) the traveling public’s needs as related to Congress’ strategic goals for the nation’s transportation system.

Champions
Deanna Belden | MnDOT
E-mail
Scott Zainhofsky | NDDOT
E-mail
Jack Smith | NDDOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
EM - Synthesis: Multi-Objective Resource Allocation

Considered for advancement in 2022

Objectives

Investigate, compile, and categorize examples of organizations’ efforts of using performance measures and data supported tools for cross resource allocation and goal-oriented decisions.

Champions
Deanna Belden | MnDOT
E-mail
Scott Zainhofsky | NDDOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
OM - Managing Workforce Changes and Availability

Considered for advancement in 2022

Objectives

  • Understand changes in transportation workforce behavior
  • Understand the economic forces that change transportation workforce behavior
  • Determine ways that transportation agencies can better manage with these forces
  • Recommend steps that agencies can take to work within these forces

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
OM - Synthesis: Effectiveness of Process Improvements

Considered for advancement in 2022

Objectives

Lean Improvement research questions:

  1. Are there other states and countries with Lean Improvement or similar offices?
  2. In what types of work are they achieving success?
  3. Are there difference in focus between the DOTs?
  4. Are there lessons to be learned by DOTs about how they might best improve their improvement efforts? (e.g., the Lean effort in England focuses mainly on the application of Lean principles in construction, but US States have not yet adopted Lean Construction to any great extent.)

Efficiency research questions:

  1. Are there other states and countries with efficiency reporting requirements?
  2. How do the reported efficiencies compare?
  3. Are there types of efficiency that are reported in some states but not others?
  4. Are there lessons to be learned by DOTs about how they might best improve their efficiency?

Champions
Nigel Blampied | Projectresearch.org
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
TAM - Management System Treatments vs. Projects

Considered for advancement in 2022

Objectives

Research is needed to determine how to extent existing asset management systems to better develop projects from the treatment recommendations these systems generate.

The proposed research would include the following tasks, at a minimum:
• Review of existing transportation asset management systems and the approaches agencies use for developing projects from management system treatment recommendations.
• Development of a framework for transportation asset project development. The framework should incorporate: asset lifecycle strategies, other investment objectives that may lie outside of existing asset management systems, such as improve equity, accessibility and mobility; major constraints and parameters related to development of projects; and other factors.
• Gap assessment to identify issues in current practice and opportunities for improvement.
• Development of prototype tools that supplement existing management system treatment recommendation to better support project development.
• Piloting the framework and tools with one or more transportation agencies.
• Development of a research report documenting the results of the research effort.

Champions
Justin Bruner | Pennsylvania DOT
E-mail
Bill Robert | Spy Pond Partners
E-mail

Email Champions

Short-Term
Research Candidate Statement
TAM - Synthesis: Current state of resilience work 

Considered for advancement in 2022

Objectives

  • Explore current state of practice to establish a baseline.

Champions
Aimee Flannery |
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Recent research has documented approaches to performing this work and several states have developed programs of differing levels of maturity. A Synthesis project at this time will enable agencies to understand the current state of the practice and identify leading practices that can be adopted to advance their own programs.

Champions
Brad Allen | Applied Pavement Technology
E-mail
Todd Shields | Indiana DOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

To rethink how a transportation agency should be organized to maintain and operate an existing system in real time. That includes a focus on preservation and maintenance of existing assets, responding quickly and effectively to incidents and emergencies, and operating the system at an optimized level of service given funding constraints. The research will consider what systems and processes need to be in place to monitor conditions and operations, the role of maintenance and asset management in programming and project development, effective use of agency forces, budgeting for maintenance and replacement over the lifecycle, and how to manage risk as a compliment to resource constrained asset management strategies. The research will look at various public and private sector models that look at organizational structure, element driven contracting, funding allocation models, and the role of in house vs contract resources to maximize the cost effectiveness of resource investments.
Project objectives envision developing a synthesis using the following guidance:
1. Identify organizational practices that integrate maintenance and operational needs into capital planning processes.
2. Perform a domestic and international scan of how and what transportation agencies do organizationally to implement effective Asset Management and TSMO practices for holistic decision-making throughout the asset lifecycle.
3. Identify decision-making, communication, and organizational practices to in-clude all stakeholders in the lifecycle of the assets.
4. Identify project criteria and business practices that can be used for realizing improved transportation system performance over time. This includes how or-ganizations take into account maintainability, sustainability, resiliency and functional performance in the development, design and construction of pro-jects.
5. Develop case studies on how capital transportation projects are delivered and the problems that occur across functional areas. Agencies will be interviewed to determine root cause analysis of projects to evaluate both successes and problems with the long term lifecycle management of assets arising from poli-cies, organizational practices, and knowledge transfer and how that impacts an agency’s ability to maintain a state of good repair for new and existing assets.
6. Evaluate how federal funding mechanisms could be employed to fund mainte-nance needs of new and existing asset types arising out of capital project prior-itization.
7. Evaluate how agencies integrate performance targets and measures into their maintenance, operations, program management and asset management pro-cesses to drive decision making.

Champions
Matt Versdahl | Washington State Department of Transportation
E-mail
Steve Wilcox | New York State DOT
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

The purpose of the proposed research project is to provide state DOTs with the necessary tools to assess and manage financial risk at the enterprise and program levels.

The specific research tasks to accomplish the main objective include:

• Task 1 – Conduct an in-depth literature review of all studies related to assessment and management of financial risks in transportation agencies, especially at the enterprise and program levels, including national and international examples as available.
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate financial risk at the enterprise and program levels.
• Task 3 – Develop a methodology for identifying and quantifying financial risks at the enterprise and program levels.
• Task 4 – Develop metrics and performance indicators for evaluating effectiveness of financial risk countermeasures.
• Task 5 – Develop decision-making tools for resource allocation under conditions of financial uncertainty.
• Task 6 – Develop methodology and guidance on consideration of program and potentially project-level financial risk within the enterprise.
• Task 7 – Pilot test the developed processes with multiple state DOTs and revised methodology as needed.
• Task 8 – Develop an implementation guide to help state DOTs to incorporate these processes into existing agency programs and projects.

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Emerging technologies hold the promise of transforming asset data collection for transportation asset management such as the use of drones for inspections, LiDAR field data collection, continuous monitoring of real-time sensor data, and more. While the technology has been transforming, MAP-21 and the Fast Act jump started at many agencies in attaining an inventory of infrastructure assets and transportation data. At the same time, accessibility and affordability to collect high volumes of asset inventory data, such as LiDAR point cloud data, present the problem of how agencies can visualize and manage such large amounts of data and integrate the many layers for each transportation asset management plan. Now that the need for such data is federally recognized, further research is needed to understand what the latest technologies for asset analysis can offer an agency as well as how frequently that information needs generated.

Research is needed in the following areas:
• Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
• What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
• Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

Champions
Perry Lubin | SPP
E-mail
Bryce Kositz | Infromation Technologies Curves, Incorporated
E-mail
Bryce Kositz | Information Technologies Curves
E-mail

Email Champions

Objectives

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

● Survey and interview State DOTs and others as to their practices during COVID. For example: observe their budget outlays, activities performed and data collection.
● Focus on uncertainty in general - such as funding uncertainty; the results could be utilized for good practices not just in times of widespread disease, but also for times of economic austerity such as a recession. Note: The visualization committee (AED80) has been kicking around a research idea related to how to VISUALIZE uncertainty. Could be a good opportunity to collaborate with that TRB committee. Anne-Marie McDonell and Matt Haubrich are both on AED80 so feel free to reach out.
● Potential to focus on risk management with respect to federal TPM target-setting (rather than risk management with respect to funding uncertainty).

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Several economic optimization methods are linked with TAM project selections. One of the economic indicators in measuring them is the ROI (which can be defined in various ways), but there are others such as NPV, IBC, FYRR and more. This research needs statement refers to the need of connecting prioritization / different approaches to asset management (such as optimization) and TAM project selections and economic indicators.

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

There are several known methods of estimating the maintenance backlog – via budget (raising the network to a given level within a given number of years), length or percentage of the network under a given maintenance standard (such as PCI, PSI, IRI or other indicator),

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

This question is usually dealt with in road assets but can be expanded to bridges and other assets as well. It is part of a life cycle cost analysis when the evaluation is performed on different treatments which are differentiated by their frequency (usually every X years) and thus influencing their cost. Many Asset Management Systems incorporate this kind of analysis.

Champions
NKTest | test
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

The objective of this synthesis is to identify best practices from State DOTs of how to improve processes through required performance-based planning and programming document development and implementation through exploring:
• How State DOTs and MPOs are linking and including asset management decisions in their traditional planning processes;
• How agency’s integrate asset management project identification and prioritization into required planning processes;
• Gap analyses of where State DOTs and MPOs identify a need for more guidance on how to connect required performance-based documents to programming decisions;
• What management systems are in use to help agencies implement risk-based asset management with performance objectives and targets.
• Examples of where MPOs work in partnership with State DOTs to mobilize National Highway System partner owners (local agencies) to plan/program to performance targets.

Champions
Anna Batista | High Street Consulting Group
E-mail
Meredith Hill | Maryland SHA
E-mail
Jeff Neal | NCTCOG
E-mail
Adi Smadi | The University of Kansas
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

● Guidance on establishing BIM data governance and quality standards to support asset management.
● Recommend standards for data transfer between data collection and asset management systems.
● Develop maturity scales for BIM implementation and establish appropriate maturity level for integration of TAM
● Research on BIM applications to support DOTs' data governance specific to the collection of data by one part of the agency can be used directly by other parts of the agency
● Evaluate cost effectiveness of collecting and managing data through BIM at a sufficient level of quality.
● Aligning the focused but detailed project-level data with network-wide but less detailed TAM data.

Champions
Will Duke | Spy Pond Partners
E-mail
Louis Feagans | InDOT
E-mail
Trish Stefanski | MnDOT
E-mail
Buffy Conrad | MDOT SHA
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

1. Evaluate the impacts of incomplete/missing annual pavement data collection to various aspects of agency asset and performance management, including technical considerations, such as network-level condition summary and performance forecast, maintenance, rehabilitation, and reconstruction decision-making, and condition deterioration and treatment improvement modeling.
2. Consider the effect of incomplete/missing data on the organization and processes, such as federal performance reporting and transportation asset management planning requirements, as well as impacts to other internal and external stakeholders and decision-making processes.
3. Analyze and derive recommendations on mitigation strategies that DOT could implement to minimize the impact of incomplete condition data.

Proposed research activities include:
1. Conduct a literature review to document:
○ DOT motivations and/or requirements for annual data collection.
○ Potential technical and organizational impacts or issues associated with missing an annual data collection.
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs known to currently (or in the recent past) complete pavement data collection on a 2 or more year data collection cycle.
2. Building from the literature review, survey State DOTs to capture:
○ DOT motivations and/or requirements for annual data collection
○ Potential technical and organizational impacts or issues associated with missing an annual data collection
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs that currently (or recently) collected pavement data on a 2 or more year data collection cycle
○ DOTs which have previously missed their established collection cycle
3. Conduct follow up interviews/surveys with DOTs that have longer collection cycles or which had previously missed an annual pavement data collection to understand perceived vs. actual impacts (both technical and organizational) and any mitigation strategies they employ.
4. Summarize literature review, survey results and follow up interviews to guide ongoing research activities
5. From a representative set of DOTs, collect available pavement condition and work history data, pavement deterioration and improvement benefit models
6. Utilize collected data to complete a statistical evaluation of the impact missing a year of data collection with respect to forecasted vs. actual performance results, and ability to identify priority investment areas based on previous year’s data collection, as well as other issues identified through the survey
7. Identify potential strategies to mitigate the impacts of incomplete condition data
8. Document survey results and evaluation outcomes
9. Produce a technical report summarizing impacts of, and potential mitigations for, missing an annual pavement collection cycle
Desired products include:
● Detailed listing of current requirements and/or motivations for annual pavement data collection
● Summary of perceived and actual impacts of missing an annual data collection against the listed motivations, supported with a statistical evaluation of actual DOT datasets where applicable
● A summary of potential mitigation strategies that can be employed to reduce the identified impacts

Champions
Bahar Bazargani | SRF Consulting Group
E-mail
Cristina Torres-Machi | University of Colorado Boulder
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Better define the needs for education, training and workforce development related to transportation asset management and transportation performance management. Develop resources as needed for the following sub-areas:
Education—Writing curriculum for undergraduate and graduate courses
Training—For DOT and MPO staff in-depth career training, NHI, etc.
Workforce Development—e.g., TC3

Champions
Matt Hardy | AASHTO
E-mail
Katie Zimmerman | APTech
E-mail
Walter Butcher | Crowe, LLC
E-mail
Richard Boadi | Wood, PLC
E-mail
Dr. Basak Bektas | Minnesota State University
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Implementation of NCHRP 08-118: Risk Assessment Techniques for Transportation Asset Management

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Implementation of NCHRP 08-129: Incorporating Resilience Concepts and Strategies in Transportation Planning

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

The objective of this implementation project support further testing and use of Asset Valuation Guide developed through NCHRP Project 23-06. This project will aid a set of transportation agencies in implementing the asset valuation guidance. A set of case studies will be developed based on the agency implementation efforts. Details on the case studies will be added to the web-based version of the asset valuation guidance and subsequent versions of the Asset Valuation Guide. Further, the web and printed versions of the Guide will be revised to reflect the additional experience gained from the case studies.

To support accomplishing the research objectives the effort will incorporate the following activities at a minimum:
• Delivery of a set of workshops to review and summarize the Asset Valuation Guide.
• Identification of a set of six transportation agencies to participate in implementation of the asset valuation guidance.
• Application of the asset valuation guidance for the selected set of agencies, resulting in calculation of asset value by asset class, the cost to maintain asset value and related measures such as the Asset Consumption Ratio, Asset Sustainability Ratio and Asset Funding Ratio.
• Illustration of how information on asset value can support improved TAM decisions.
• Refinement of the Asset Valuation Guide (printed and web versions) based on the results of the case studies.
• Development of supplemental tools and worksheets to assist in calculating asset value to support TAM utilize the Asset Valuation Guide.

Champions
Bill Robert | Spy Pond Partners
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Integrating Risk and Resilience into the Performance Management Decision-Making Process

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

1. Evaluate current federal PM2 measures, both pavement condition measures and bridge measures, for performance thresholds, and overall performance measure with respect to: Consistency, Usefulness, and Alignment.

2. Identify and address in detail specific challenges for each condition measure for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 3. Provide recommendations to improve existing measures and/or identify metrics that better reflect conditions enhance decision-making taking into account not only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation.

Champions
Todd Shields | INDOT
E-mail
Brad McCaleb | ARDOT
E-mail
Adi Smadi | The University of Kansas
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

Research is needed in the following areas:
● Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
● What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
● Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
AI and Deterioration Modeling

Considered for advancement in 2020

Objectives

This research project would aim to develop a Primer or Guidance document to help agencies tasked with managing infrastructure (including pavement and bridges) to assess their current data, data collection processes, and data needs to best position them to be able to take advantage of burgeoning artificial intelligence techniques to develop increasingly accurate predictive models regarding their infrastructure.

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Champions
Scott Bloxsom | Essency Consulting USA Inc
E-mail

Email Champions

Short-Term
Research Candidate Statement
Objectives

The ultimate objective is to provide the decision-maker with tools that add value to the decision-making process and improve the robustness of the infrastructure network as a whole. In that sense, novel approaches for the evaluation of risk will be sought to capture the stochastic nature of interdependent infrastructure. A graph theory approach to evaluate criticality of network node failure as shown by Buldyrev and colleagues (2010) may prove interesting for the evaluation of consequences, and thus the real option value for the infrastructure, simulated by network programming methods.

Champions
This candidate currently has no champions

Short-Term
Research Candidate Statement
Objectives

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Objectives

This research should:
• Identify pertinent data sources, data types, as well as relevant collection and analysis methods employed by transit agencies.
• Provide a synthesis of examples or State of the Practice applications for MPOs/DOTs.
• Outline communication strategies to the relevant decision-makers.

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
System Level Asset Valuation

Considered for advancement in 2016

Objectives

The objectives of this research are to examine methods for evaluation of system assets. Thorough research should:
• Identify international practices and determine how they can be applied in the US
• Better marry engineering and accounting in financial planning
• Demonstrate benefits through a case study (may be fictional)

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Aligning the Organization for TAM

Considered for advancement in 2016

Objectives

The focus of this research is to support a scan tour or peer exchange addressing organizational alignment for TAM. This falls into three distinct but equally necessary categories: a review of previous knowledge, a inter-agency gathering to assess differing organizational models and policies to TAM, and finally a report or summary of the findings.

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Objectives

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Objectives

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Create Catalog of Condition Assessment Protocols

Considered for advancement in 2020

Objectives

Document and provide examples of condition assessments for all types of assets.

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Develop TAM Big Data Case Studies

Considered for advancement in 2020

Objectives

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Incorporate Change Management into TAM Implementation

Considered for advancement in 2020

Objectives

Champions
This candidate currently has no champions

Medium-Term
Research Candidate Statement
Causes and Effects of Transportation Data Variability

Considered for advancement in 2020

Objectives

The outcome from this effort will benefit quality assurance (QA) methods for data collection and inspection efforts, quantify the variability and sensitivity in target setting for DOTs, and help budget planning for asset inconsistencies.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

Research is needed addressing the question: “What are the organizational/cultural factors that were in place before and/or during implementation that created a successful TAM program?” Develop a guidebook to convey lessons learned. Key point: must use an organizational development or similar consulting firm. Not the usual suspects!

Champions
Hyun-A Park | Spy Pond Partners, LLC
E-mail

Email Champions

Long-Term
Research Candidate Statement
Objectives

This research will focus on understanding TAM’s relationship to other transportation goals such as economic development, safety, environmental sustainability, mobility, and livability. Two products are sought through this research: 1) Framework for understanding the relationships between TAM and broad transportation goals. 2) Guidance on how to ensure TAM connectivity to broad transportation goals throughout the transportation decision-making cycle.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

This research will focus on understanding successful organizational models for TAM program so that guidance can be provided on how to improve organizational capacities. Two products are sought through this research: 1) Understanding of current organizational models for TAM programs 2) Catalog of possible organizational models for TAM programs that transportation agencies could consider for improving TAM capabilities.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The objective for this research is to examine the costs and value associated with maintaining assets, and then to develop a usable model for forecasting the cost and value. Such a model must include, but not be limited to:
• A framework for quantitatively assessing the value of an asset that has been properly maintained.
• A tool for calculating the long-term costs of maintaining an asset, in line with industry standards for safety and reliability.
In addition to developing the model, the research should also establish guidance targeted at helping practitioners conduct forecasting analyses and communicate the results.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The proposed research will:
• Evaluate various technologies for tagging and tracking assets and capturing asset history. Each proposed tracking technology should be evaluated for various factors, such as cost, ease of use, efficacy, and time required to implement.
• Create a standard for transportation asset tagging and tracking that can be used intermodally and across agencies.
• Develop a business case to demonstrate the lifecycle savings that can be achieved by transportation entities. This case study may be fictional if a suitable real-world example cannot be identified due to the new nature of the technologies.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The proposed research will:

  • Identify and classify data items required to inform the maintenance and rehabilitation of different asset types.
  • Determine the degree of relevance/criticality of select data items towards treatment decisions.
  • Identify the level of detail required for asset management decisions at both the project and network level.
  • Construct sensitivity analyses between data elements and infrastructure performance to explore the relationships that exist between them. This would also justify which data items are worth investing more resources into in order to mitigate uncertainties in developing long-term infrastructure preservation plans.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The proposed research will first develop a methodology that will allow dynamic changes to treatment plans. Then, the research must test the methodology, as well as identify and quantify cost savings benefits of using the methodology or tool.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

Identify linkage between ISO standards and MAP-21 TAMP requirements. Identify gaps or inconsistencies and propose solutions. The proposed solutions may include guidelines for agencies, research needs, modification to the standards, or agency specific standards that address agency specific needs.

Champions
Perry | SPP
E-mail

Email Champions

Long-Term
Research Candidate Statement
Objectives

The focus of this research can be divided into three main categories. Firstly, prior information must be collected and organized. This is accomplished through:
• Case studies and examples of best practice
• Creating a synthesis of state’s best practices
The next step is to build tools that allow for better asset management marketing, such as:
• Communication, sales, and/or a media science application to help craft a way to tell the story
• Creating a marketing plan that can be used to educate and train
• Training to Speak a language that all can understand
• Communicating the secondary benefits of TAM
Finally, follow-ups of the methods must be conducted to measure efficacy. This could include examining:
• How effective are the marketing and communication? Is the message being received?
• How has public perception changed?

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Infrastructure Needs for Autonomous Vehicles

Considered for advancement in 2016

Objectives

The objectives of this research are to quantify the expected abilities of autonomous vehicles, to establish an expected timeline of integration within the greater transportation networks, and to examine what infrastructure changes are most beneficial for autonomous vehicles.
The capacities of autonomous vehicles are not yet quantified. The research should:
• Determine what types of roads are suitable for such vehicles.
• Examine safety for both drivers/passengers, and other users of the roadways, such as pedestrians and cyclists.
• Explore limitations, such as fog or extreme conditions.
• Establish a timeline for adoption. Since the technology is expected to change rapidly, current capabilities will change.
The infrastructure requirements for autonomous vehicles are greatly dependent on the capabilities of the vehicles. Nevertheless, certain changes can be expected to improve the safety and usefulness of the vehicles, such as:
• Repainting roadways to help the vehicles operate.
• Installing RFID that could communicate with the vehicles directly.
• Determining what challenges would face a mixed-stream road of autonomous vehicles and vehicles under driver operation.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
How to Recruit, Train and Maintain a TAM Staff

Considered for advancement in 2016

Objectives

The primary focus of this research is, at a most basic level, to help agencies strengthen their work force. This should be accomplished by researching areas where:
• Agencies lack a comprehensive list of necessary skills for a given position
• Agencies lack a comprehensive list of which positions are most critical to keep fully staffed. In an era of shrinking budgets, effectively prioritizing hiring decisions is crucial.
• There is a gap in knowledge regarding existing certifications.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The research should focus of two primary areas of focus. The researchers must develop a guidebook for data integration across jurisdictional lines, as well as review the existing standards for civil data. This could include projects such as Civil Integrated Management (CIM) and the researchers must document the positive and negative ramifications of the various standards.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Develop Approaches for Corridor Planning and Allocation

Considered for advancement in 2020

Objectives

Develop guidance on an asset management corridor planning process to prioritize and schedule project delivery for cost effectiveness while also considering mobility/accessibility issues, drainage, and more.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Engage Stakeholders in TAM

Considered for advancement in 2020

Objectives

Develop communication tools and methodologies for engaging stakeholders in TAM program activities such as strategies development, performance management implementation, and budget development.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Support Data Governance Implementation

Considered for advancement in 2020

Objectives

Provide support to implement the data governance practices and processes recommended through NCHRP 08-115, Guidebook for Data and Information Systems for Transportation Asset Management.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Assess Benefits Realized from TAM

Considered for advancement in 2020

Objectives

Develop a framework and guidance for calculating and communicating the overall benefit of improved asset management approaches to transportation agencies, transportation system users, and society of improved asset management approaches. The framework should address monetized benefits, as well as issues such as equity, sustainability, and resilience. Illustrate use of the framework and examples through a set of pilot studies of U.S. agencies.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Objectives

The objectives of this research are to:
• Generate risk identification techniques to determine high risk threats at project and network levels,
• Develop quantitative, repeatable approaches for assessing likelihood and consequences for these threats,
• Develop visual, interactive characterization methods (e.g., dashboards) to reflect an agency’s level of risk and the effectiveness of proposed mitigation actions,
• Allow risk and resilience to be on par with traditional performance measures.

High risk threats to be studied include, but are not limited to, extreme events (e.g., earthquakes, fires, hurricanes, avalanches, tornadoes), asset failure (structural and operational), financial, strategic, political, environmental (e.g., sea level rise, flooding), technological, and social justice risks.

The final deliverables could include guidebook with a spreadsheet or a framework for assessing high risk threats and incorporating the results into TAM efforts. The guidebook should feature a comprehensive review of existing literature and current practice. It should present a standard definition of resilience as well as step-by-step instructions to develop models, methods, and metrics for estimating resilience of highway systems to high risk threats. Pilot studies should be conducted with select agencies to test the guidance and calculation procedures.

Champions
This candidate currently has no champions

Long-Term
Research Candidate Statement
Evaluate Federal Measures and Metrics for Pavements

Considered for advancement in 2020

Objectives

The objective of this research is to:
1. Evaluate current federal pavement condition measures (Ride Quality, Rutting, Faulting, and Cracking), performance thresholds, and overall performance measure with respect to:
a. Consistency – across various pavement types, network designations, and lane configurations
b. Usefulness – in network-level pavement condition summary and asset management decision-making, prioritization, and forecasts; and
c. Alignment – with state established pavement condition metrics

2. Provide recommendations to improve existing measures and/or identify metrics that better reflect pavement failure mechanisms and enhance decision-making taking into account not
only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation. Evaluate pavement leading indicators as an alternative to the current version of the PM2.

3. Identify and address in detail specific challenges for each condition measure (Ride Quality, Rutting, Faulting, and Cracking) for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 4. Evaluate structural capacity indicators for potential consideration as a Federal measure.

Champions
This candidate currently has no champions

Title Background and Problem Statements Objectives Proposed Research Activities Desired Products Notes and Considerations Funding Estimated Timeframe Category of Funding Status
CC - Performance Measure Dictionary and Technical Guidance

This research would produce an updated guidebook of current and emerging performance
measures used and for use by State DOTs.
NCHRP 20-24(37)G – Technical Guidance for
Deploying National Level Performance Measurements
was completed in 2011. This project
would update this valuable guidance.

Update products of NCHRP 20-24(37)G – Technical Guidance for
Deploying National Level Performance Measurements
.

Full NCHRP
SMET - Acquiring Better Data (Private Sector, Third Party, Fused Datasets)
  • Seek better data from the private sector and third parties, and fuse this data with DOT data to generate new comparisons and insights.
  • Collect and develop datasets for mobility and traffic.
  • Explore the availability of new datasets and identify ways to use datasets with DOT data for calibration of QA/QC.
  • Compare the scope, availability, reliability, and accuracy of privately available transportation mobility and traffic datasets sold by companies such as INRIX, Teralytics, Streetlight, etc.
  • Update and improve data definitions, especially for traffic. (State DOTs often measure traffic in discrete measures like AADT, but people are increasingly using a blend of modes to move from origin to destination, and traffic data should reflect that.)
Full NCHRP
SMET - Synthesis: Data Gathering & Data Sharing Agreements to Monetize DOT Data
  • Understand state DOTs' rules governing their data sharing agreements and intellectual property
  • Explore agency methods and examples for monetizing data
  • Identify what IP exists for sharing and selling data
  • Find and highlight best-practices in multi-state data agreements
  • Understand what agencies and organizations are doing to support their data sharing agreements
  • Recognize what data should be collected, sought, and shared
Synthesis
SMET - Determine the role of data to ensure equitable deployments of AVs and shared mobility within communities.
  • Identify the best locations for AV deployment which would deliver equity for all communities
  • Understand the elements of equity surrounding AV and shared mobility deployment
Full NCHRP
ERM - Improving Risk Visualization and Communication Internally and Externally 

Risk communication is the act of sharing information about potential threats to people and infrastructure with the objective of saving life and property. This covers a wide range of information, including asset condition, mobility, safety, economic impacts, environmental impacts, and others. Effective verbal, visual, and written communication promotes the recovery of disrupted systems while maintaining public confidence in these systems. This requires that all communication tracks be congruent and effective.
Barriers to effective risk communication exist, both internally and externally. One major barrier to internal communication is organizational “siloing”. Staff working within different functional areas (such as safety, operations, and emergency management) may feel little incentive to collaborate if they believe their missions are independent of other departments. Organizational silos result in duplication of effort and inefficiency, and lack of various perspectives in approaching problems.
Another major obstacle is delivering the appropriate message at the right time with clear language that speaks to all audiences. If not properly delivered, communication may inadvertently create hysteria, unease, and confusion. Barriers to external communications with outside agencies stem from a lack of established two-way communications channels, dissimilar language, and varying definitions of risk. Communications with the public and others need to eliminate rumors, lack of expert consensus, over-hyped reporting, failure to understand of ethnic differences, and so on. Ultimately, overcoming these obstacles requires:
• Leadership direction including a reality-based vision, the "path forward", and incentives to interact
• Organizational support from multiple groups
• Clear definition of both Inter- and intra-agencies including:
- What collaboration may look like
- The reason and importance of the collaboration
- How and when collaboration takes place
• Partnerships with community organizations
• Defined and appropriate language for messaging that effectively outlines the hazards, severity, location, affected population, and uncertainty of risk
• Alignment of verbal, visual, and written communications to relay complementary messages.
• Selection of appropriate messaging vehicles (email, variable message sign, web site, etc.)
These efforts require research to identify the best methods and current examples of how to implement such communication at a DOT. As many options exist for internal and external risk communication, and various agencies and organizations have their own communication requirements, effective research will provide a path forward to establishing effective risk visualization and communication at a DOT.

The objectives of this research are to develop guidance in the following initiatives which can be used to develop effective risk visualization communication within DOT’s, with external agencies, and the public in the by performing study into the following initiatives:
1. Establishing intra-agency communication.
2. Establishing external partnerships and two-way communications channels with community organizations.
3. Crafting an effective visual, verbal, and written communication strategy with materials (ie., metrics, dashboards, regular reports) with a clear explanation of uncertainty.
4. Determining the appropriate message vehicle.
This research will examine current strategies and methods of risk visualization communication at various DOT’s. Internal communication, two-way communication channels with external organizations, associated strategies, and other aspects of communication in relation to risk visualization will be extensively explored.

LINK TO 2021-2026 AASHTO STRATEGIC PLAN: This project aligns to the AASHTO Strategic Plan by providing information that will help DOTs develop further organizational excellence and effective services in knowing how to create the best risk communication strategies that will share risk information both internally and with external agencies and the public at large. Knowledge of risks will lead to better transportation products and services by helping to identify what aspects of transportation require improvement and safety enhancement. This will also lead to further examination of current and emerging trends present in transportation policies and practices, while promoting a range of new policy options that can be implemented. This project will align with AASHTO’s plan to provide safety, mobility, and access for everyone by providing blueprints for effective communication with external agencies and the public. By making the public aware of potential risks, and pursuing solutions to these risks, DOTs will be able ensure that social equity within the public sphere is preserved while transportation systems are made safer. Effective communication with community organizations, especially, will forge strong connections between transportation agencies with public interest.

The ability to effectively communicate risks both within an agency and externally to key stakeholders is important in decision-making and assuring effective mitigation strategies are assigned and appropriate resources are dedicated. Risk management is an effective tool for decision-making but communicating risks, potential impacts and likelihood of occurrence as well as appropriate mitigation is often not well understood.

This proposal builds off of a similar RPS developed as part of NCHRP 20-123(04) but adds in and emphasizes the element of visualization to improve communication. It also emphasizes the concept of risk tolerance.  

Full NCHRP
ERM - Improving Responsible Risk-Taking Perception in Transportation Agencies  

Emphasis on developing tools and methodologies to document risk tolerance and acceptance parameters associated with taking risks. 

OM - Creating Organizational Culture and Focus to Build Greater Resiliency

State departments of transportation (DOTs) and other transportation agencies are working to deliver greater resiliency in their transportation systems. Agencies are changing established business processes, technical methodologies, tools, and systems to build resiliency. In order to achieve sustainable change and have lasting improvements in resiliency, agencies need to also address organizational culture in order to bring about greater enthusiasm and focus on resiliency building.

Organizational culture is defined as the underlying beliefs, assumptions, values and ways of interacting that contribute to the unique social and psychological environment of an organization. It focuses on building shared values to achieve the organization's goals and objectives. When transportation agencies have good organizational culture, employees know how agency executives want them to respond to any situation, employees believe that the expected response is the proper one, and employees know that they will be rewarded for demonstrating the organization's values.

Greater understanding of the elements of good organizational culture and how it can be applied to transportation agencies to achieve greater resiliency is needed. This research project would include identification of agencies that have had success in building resiliency and examine what elements of organizational change supported the successful resilience building. Research on sectors outside of transportation where resilience is important would be conducted to understand the organizational culture elements. The ingredients for building organizational culture to achieve greater focus on building resilience will be created for transportation agencies.

The proposed research be composed of the following components:
• Conduct a literature/practice review of the relevant information
• Identify organizational practices and determine how they can be generalized to support guidance
• Develop guidance for agencies
• Demonstrate/evaluate guidance through at least one case study
• Produce a final report including an executive summary

Full NCHRP
CC - Determine the appropriate level of overhead expenditures for managing new grant programs to prevent fraud and mismanagement, while maximizing public benefit

Both federal and recipient agencies have the goal of maximizing the public benefits from investment of the limited transportation funding. Additionally, there is a cost and/or risk to every activity or inaction related to program delivery. Whenever an available dollar is moved from physical or operational improvements on the system to program administration, the public loses the benefit of that dollar. Similarly, every dollar that is lost from the system because of fraud or diverted away from the program goals due to whatever form of mismanagement, the public loses the intended benefit of that dollar. Therefore, the goal of all agencies should be to minimize the negative risks and costs associated with administering the funding programs, even if that means the occasional dollar is lost to fraud or mismanagement when the cost to prevent that loss is greater than the cost of the loss itself. It seems especially important to avoid duplicative administrative costs generated from the various governmental levels. The essential issue is determining the end-user public return on investment (ROI) from adding program requirements for both the federal agency and the recipient agency.

Develop a means of determining the balance between program requirements that minimize the risks of fraud and/or of not meeting program goals with maximizing the benefits to the end users (i.e., the public).

Full NCHRP
EM - Using State and Local Stakeholder-Driven Performance Measures to Monitor Progress Toward National Goals

In many cases, states and other local government agencies have performance measures developed through the extensive public outreach in the various federally and internally required strategic planning efforts. Not surprisingly, these “local” performance measures are often related to but different from the federally mandated performance measures.

For example, freight mobility in an urban area often means travel time (i.e., traditional congestion), similar to the federal system performance measures (PM3); however, in a rural area, it means the system’s ability to carry the desired loads (i.e., height, width, and load restrictions not meeting expectations causing loads to be rerouted over longer distances). In either case, the results are wasted time, money, and fuel, and more greenhouse gas (GHG) emissions. Reducing this waste is really the goal of the federal measures above. Therefore, the same goal is being monitored, whether using the federal measures or the state and local (hereinafter, local) performance measures. This is just one example of many similarly developed local performance measures related to a national goal area but with different metrics and definitions than the national measures.

By definition, the local measures are important to the end users of the transportation system by virtue of being developed through public input. Therefore, local policymakers often want or require these measures to be used in the decision processes and to tell the local story of transportation performance, safety, condition, etc. (hereinafter, performance). It would reduce waste and improve public transparency if these local measures could also be used to tell the national system performance story. This would avoid potentially conflicting messages from local and national sources and avoid the duplicate work of collecting, monitoring, and analyzing similar measures related to the same basic goal. Additionally, the collective of local measures could be used to tell a more comprehensive and complete story of the nation’s overall movement toward its shared transportation goals through a “drill down” approach of providing greater and greater detail from the national level through the regional, state, and local community levels.

Develop a means of consolidating the many related local measures into a set of national measures that describes and monitors how well the national transportation system is meeting (or not meeting) the traveling public’s needs as related to Congress’ strategic goals for the nation’s transportation system.

Full NCHRP
EM - Synthesis: Multi-Objective Resource Allocation

As funding for resource allocation increase and decrease each year it is critical for agencies to ensure that they are spending the resources the best they can and meeting as many needs as possible. The challenge of meeting condition needs vs operational needs vs quality of life is increasing each year for agencies. Thus, as agencies work each year to make resource allocation decisions for multiple service areas, and analysis the impacts of these decisions are often difficult to captured with performance measures. For example, condition measures for physical asset classes (pavements, bridges, etc.); performance measures for system operations (snow and ice control, traffic operations, emergency response) and quality of life measures (safety, accessibility, equity) are used by agencies to evaluate these resource allocations. State agencies generally have flexibility to adjust the level of investment of these categories, yet evaluation of the tradeoffs or optimization of these decisions are often limited to similar measures (bridge condition vs pavement condition). Is there potential benefit in expanding the scope of these analyses to include performance measures and investment classes of less similar nature. What tools do agencies use for this cross-asset allocation; How are the tools used for asset resource allocations to include services and quality of life investments?

Investigate, compile, and categorize examples of organizations’ efforts of using performance measures and data supported tools for cross resource allocation and goal-oriented decisions.

Synthesis
OM - Managing Workforce Changes and Availability

Transportation agencies traditionally had a very steady workforce. The combination of changes in young people’s work patterns and the economic changes that drive workforce availability requires that agencies need to act more proactively on how to deliver transportation programs. Research is needed to understand the behavioral patterns and mechanisms to both mitigate variability in workforce availability and what can be done proactively to benefit the agency.

With the increased funding states are receiving based on the IIJA and BFP. NMDOT has identified the fact that we may run into contractor availability to meet the needs of the upcoming projects.

  • Understand changes in transportation workforce behavior
  • Understand the economic forces that change transportation workforce behavior
  • Determine ways that transportation agencies can better manage with these forces
  • Recommend steps that agencies can take to work within these forces
Full NCHRP
OM - Synthesis: Effectiveness of Process Improvements

Several states have established offices to implement continuous improvement processes such as Lean, Design Thinking, or Change Management. Over 30 of these offices participate in the Transportation Lean Forum (TLF), an informal group that operates in association with the AASHTO Subcommittee on Organization Management. In addition to formal offices, some states make less formal “grass roots” efforts to improve their processes. A synthesis would conduct a side-by-side study of the states’ efforts, including efforts in states that are not participating in the TLF, find what is working and what is not, assist states to identify improvements that they might implement, and set a baseline of the current “state of the art” that could inform future research on the outcomes of these efforts.

Lean Improvement research questions:

  1. Are there other states and countries with Lean Improvement or similar offices?
  2. In what types of work are they achieving success?
  3. Are there difference in focus between the DOTs?
  4. Are there lessons to be learned by DOTs about how they might best improve their improvement efforts? (e.g., the Lean effort in England focuses mainly on the application of Lean principles in construction, but US States have not yet adopted Lean Construction to any great extent.)

Efficiency research questions:

  1. Are there other states and countries with efficiency reporting requirements?
  2. How do the reported efficiencies compare?
  3. Are there types of efficiency that are reported in some states but not others?
  4. Are there lessons to be learned by DOTs about how they might best improve their efficiency?

Lean Improvement: Several DOTs have established offices to implement continuous improvement processes such as Lean, Design Thinking, or Change Management. These include a t least thirty US States, five Canadian Provinces, England, the Netherlands, and Sweden.

Efficiencies: Several state DOTs (e.g., CA, MN, OH) and England are required to submit annual efficiency reports.

(30 states + other agencies have initiatives). What can be learned from these efforts? For instance, in England, the focus is on construction-only. (Nigel) 

Synthesis
CC – Measuring the public value and wider societal benefits created by transportation investments

Performance measurement and performance-based management have a long history in state DOTs as a discipline to track progress toward goals and optimize resource decisions. However, transportation agency goals are evolving from a pure operational focus to a focus on broad societal goals and creating value for the public. The value created by transportation investments spans not only transportation but also education, human services, land use, environment, and economy. A broader view of value and methods are needed to account for not only quantifiable value but also qualitative value. Another challenge is time horizons - how to value and manage investments today to deliver benefits in the much longer term. This research would develop and test measures of wider societal benefits deriving from the delivery of transportation investments.

TAM - Management System Treatments vs. Projects

Transportation agencies are required to use asset management systems, including pavement and bridge asset management systems, to comply with Federal requirements for developing asset management plans. These systems are valuable for supporting a number of business functions, including: analyzing the existing asset inventory and its condition; developing effective asset lifecycle strategies; determining resources required to maintain assets in good repair; and recommending priorities for asset treatments. However, a major challenge transportation agencies face is in using their asset management systems is in trying to develop realistic projects that utilize management system recommendations. The systems generally recommend specific treatments, but do not scope realistic projects. Thus, significant manual effort is required to review management system treatment recommendations, often from multiple systems, and combine these into candidate projects. Research is needed to determine how to extent existing asset management systems to better develop projects from the treatment recommendations these systems generate. Such research will help agencies better comply with Federal requirements, save staff time, and result in development of projects that best support agency asset lifecycle strategies and best practices.

Research is needed to determine how to extent existing asset management systems to better develop projects from the treatment recommendations these systems generate.

The proposed research would include the following tasks, at a minimum:
• Review of existing transportation asset management systems and the approaches agencies use for developing projects from management system treatment recommendations.
• Development of a framework for transportation asset project development. The framework should incorporate: asset lifecycle strategies, other investment objectives that may lie outside of existing asset management systems, such as improve equity, accessibility and mobility; major constraints and parameters related to development of projects; and other factors.
• Gap assessment to identify issues in current practice and opportunities for improvement.
• Development of prototype tools that supplement existing management system treatment recommendation to better support project development.
• Piloting the framework and tools with one or more transportation agencies.
• Development of a research report documenting the results of the research effort.

Full NCHRP
TAM - Synthesis: Current state of resilience work 

All states are taking on resiliency in their asset management plans this year, and there are additional resilience-focused programs available from FHWA.

  • Explore current state of practice to establish a baseline.
55000 12 months Synthesis
TAM - Synthesis: Best Practices for Managing Ancillary Transportation Assets

Information To Be Gathered: To further the implementation of asset management beyond pavements and bridges, there is a desire to understand how different agencies are approaching the management of these assets.
• What data is being collected?
• What techniques are being used to collect the data?
• How is the data stored and managed?
• What programming decisions are being made with the data and who in the agency is making those decisions.
• How are these efforts tied to broader asset management, maintenance management, and capital programming within the agency?

How the Information Will Be Gathered: Information will be gathered through a literature review, a survey of state DOTs, and follow-up interviews with selected DOTs for the development of case examples. Information gaps and suggestions for research to address those gaps will be identified.

Recent research has documented approaches to performing this work and several states have developed programs of differing levels of maturity. A Synthesis project at this time will enable agencies to understand the current state of the practice and identify leading practices that can be adopted to advance their own programs.

Synthesis
TAM - Organizational Best Practices around Asset Management and TSMO

The purpose of this study is to research best practices and case studies of Transporta-tion Agency Organizational and Decision-Making Structure to shift from processes driven by planning, design, and construction to organizational structures driven by the need to maintain and operate an established, integrated system based on principles of asset management and transportation system operations.

To rethink how a transportation agency should be organized to maintain and operate an existing system in real time. That includes a focus on preservation and maintenance of existing assets, responding quickly and effectively to incidents and emergencies, and operating the system at an optimized level of service given funding constraints. The research will consider what systems and processes need to be in place to monitor conditions and operations, the role of maintenance and asset management in programming and project development, effective use of agency forces, budgeting for maintenance and replacement over the lifecycle, and how to manage risk as a compliment to resource constrained asset management strategies. The research will look at various public and private sector models that look at organizational structure, element driven contracting, funding allocation models, and the role of in house vs contract resources to maximize the cost effectiveness of resource investments.
Project objectives envision developing a synthesis using the following guidance:
1. Identify organizational practices that integrate maintenance and operational needs into capital planning processes.
2. Perform a domestic and international scan of how and what transportation agencies do organizationally to implement effective Asset Management and TSMO practices for holistic decision-making throughout the asset lifecycle.
3. Identify decision-making, communication, and organizational practices to in-clude all stakeholders in the lifecycle of the assets.
4. Identify project criteria and business practices that can be used for realizing improved transportation system performance over time. This includes how or-ganizations take into account maintainability, sustainability, resiliency and functional performance in the development, design and construction of pro-jects.
5. Develop case studies on how capital transportation projects are delivered and the problems that occur across functional areas. Agencies will be interviewed to determine root cause analysis of projects to evaluate both successes and problems with the long term lifecycle management of assets arising from poli-cies, organizational practices, and knowledge transfer and how that impacts an agency’s ability to maintain a state of good repair for new and existing assets.
6. Evaluate how federal funding mechanisms could be employed to fund mainte-nance needs of new and existing asset types arising out of capital project prior-itization.
7. Evaluate how agencies integrate performance targets and measures into their maintenance, operations, program management and asset management pro-cesses to drive decision making.

Full NCHRP
ERM - Assessing Financial Risk at the Program and Enterprise Levels

Financial risks can threaten the strategic objectives of transportation agencies - e.g., the safe and reliable and efficient movement of people and goods. For example, the Highway Trust Fund is tied to taxes on gas and diesel. However, the recent COVID-19 pandemic greatly reduced American consumption, thus dramatically reducing revenues. State DOTs have seen their budgets slashed by 30% or more, forcing delays in some projects. Furthermore, external mandates can impose both risks and opportunites. A well-funded mandate could mean state DOTs have additional funding for enhancing resilience, while an unfunded mandate could force a DOT to choose between maintenance and projects. The objective of this project is to help transportation leaders with decision-making tools for allocating limited resources when subjected to unpredicatable financial conditions.

The purpose of the proposed research project is to provide state DOTs with the necessary tools to assess and manage financial risk at the enterprise and program levels.

The specific research tasks to accomplish the main objective include:

• Task 1 – Conduct an in-depth literature review of all studies related to assessment and management of financial risks in transportation agencies, especially at the enterprise and program levels, including national and international examples as available.
• Task 2 – Conduct a gap assessment of the state of practice to determine what is still needed to incorporate financial risk at the enterprise and program levels.
• Task 3 – Develop a methodology for identifying and quantifying financial risks at the enterprise and program levels.
• Task 4 – Develop metrics and performance indicators for evaluating effectiveness of financial risk countermeasures.
• Task 5 – Develop decision-making tools for resource allocation under conditions of financial uncertainty.
• Task 6 – Develop methodology and guidance on consideration of program and potentially project-level financial risk within the enterprise.
• Task 7 – Pilot test the developed processes with multiple state DOTs and revised methodology as needed.
• Task 8 – Develop an implementation guide to help state DOTs to incorporate these processes into existing agency programs and projects.

Rank 5 in 2021

450000 18-24 months Full NCHRP
Data visualization platforms and tools for statewide asset inventory data analysis and management

Emerging technologies hold the promise of transforming asset data collection for transportation asset management such as the use of drones for inspections, LiDAR field data collection, continuous monitoring of real-time sensor data, and more. While the technology has been transforming, MAP-21 and the Fast Act jump started at many agencies in attaining an inventory of infrastructure assets and transportation data. At the same time, accessibility and affordability to collect high volumes of asset inventory data, such as LiDAR point cloud data, present the problem of how agencies can visualize and manage such large amounts of data and integrate the many layers for each transportation asset management plan. Now that the need for such data is federally recognized, further research is needed to understand what the latest technologies for asset analysis can offer an agency as well as how frequently that information needs generated.

Research is needed in the following areas:
• Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
• What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
• Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

Full NCHRP
Development of Asset Class Strategies to Address the Lifecycle Capital and O&M Needs of Assets

This is a typical function of an AMS, in which different asset classes, such as different types of roads (interstate, state, local, or possibly differentiated by traffic volumes), bridges, etc are allocated different treatments and possibly different budgets per asset class. This synthesis could be both a panel study (cross-section of states) and a time series study (how the policies developed over time), and could also involve systems which use life cycle costing and those which do not.

Synthesis
Successful Practices for Managing Uncertainty: Lessons Learned from the Pandemic

Among the many difficulties raised by COVID-19, the pandemic does have the potential of affecting asset management practices in diverse ways. On the one hand, reduced traffic might reduce road maintenance costs; on the other hand, ordering more goods might increase truck traffic and thus increase deterioration. Even if deterioration were the same, the road agency would always have the option of utilizing a less expensive treatment alternative and thus reduce the capital needs and maintenance budget.

● Survey and interview State DOTs and others as to their practices during COVID. For example: observe their budget outlays, activities performed and data collection.
● Focus on uncertainty in general - such as funding uncertainty; the results could be utilized for good practices not just in times of widespread disease, but also for times of economic austerity such as a recession. Note: The visualization committee (AED80) has been kicking around a research idea related to how to VISUALIZE uncertainty. Could be a good opportunity to collaborate with that TRB committee. Anne-Marie McDonell and Matt Haubrich are both on AED80 so feel free to reach out.
● Potential to focus on risk management with respect to federal TPM target-setting (rather than risk management with respect to funding uncertainty).

Synthesis
Linking DOT Project Prioritization Process with TAM Project Selections with ROI

Several economic optimization methods are linked with TAM project selections. One of the economic indicators in measuring them is the ROI (which can be defined in various ways), but there are others such as NPV, IBC, FYRR and more. This research needs statement refers to the need of connecting prioritization / different approaches to asset management (such as optimization) and TAM project selections and economic indicators.

Calculation of Maintenance Backlog

There are several known methods of estimating the maintenance backlog – via budget (raising the network to a given level within a given number of years), length or percentage of the network under a given maintenance standard (such as PCI, PSI, IRI or other indicator),

Cost Comparison of Doing Work Early on Assets

This question is usually dealt with in road assets but can be expanded to bridges and other assets as well. It is part of a life cycle cost analysis when the evaluation is performed on different treatments which are differentiated by their frequency (usually every X years) and thus influencing their cost. Many Asset Management Systems incorporate this kind of analysis.

Best Practices of Linking Required Planning/Performance Documents/Processes

A State DOT Transportation Asset Management Plan (TAMP) documents the investment strategies and expected outcomes from various asset classes, starting with the bridges and pavement of the National Highway System. The State DOT TAMP does not replace any existing state transportation plan (e.g., LRTP, freight plan, operations plan, etc.) but does provide critical inputs to existing plans, linking capital and maintenance expenditures related to asset preservation.
At the same time that state DOTs were developing their TAMPs, states also implemented a performance-based planning and programming approach, which applies performance management principles to transportation system policy and investment decisions. Performance-based long range transportation plans, statewide transportation improvement programs (STIPs), metropolitan planning organization (MPO) TIPs, and other performance-based plans like state freight plans must define key goals and objectives and establish measures to analyze short-, medium, and long-term implementation progress.
This Synthesis should review the advancement of State DOTs and MPOs to implement performance-based planning and programming with the help of implementation plans like the TAMP and documented processes for planning, investing, and evaluating performance outcomes.

The objective of this synthesis is to identify best practices from State DOTs of how to improve processes through required performance-based planning and programming document development and implementation through exploring:
• How State DOTs and MPOs are linking and including asset management decisions in their traditional planning processes;
• How agency’s integrate asset management project identification and prioritization into required planning processes;
• Gap analyses of where State DOTs and MPOs identify a need for more guidance on how to connect required performance-based documents to programming decisions;
• What management systems are in use to help agencies implement risk-based asset management with performance objectives and targets.
• Examples of where MPOs work in partnership with State DOTs to mobilize National Highway System partner owners (local agencies) to plan/program to performance targets.

Question whether this topic should wait until the results of NCHRP Project 08-113 Integrating Effective Transportation Performance, Risk, and Asset Management Practices are released. They are covering similar topics, though the current research statement seems to be more focused on the federal TAMP/ TPM while 08-113 is about AM/ Perf Mgmt more generally

Synthesis
CC - BIM for Infrastructure: A Focus on Performance and Asset Management

Research is needed on the importance of data governance from the conception of a project’s data dictionary, through the inventory and condition assessment and continuing with the data management and integration into transportation asset management systems. A question worth pursuing is whether all aspects of language, wording, numbering, and measurement units should be standardized or if template guides could be developed for each agency to standardize their unique asset type requirements, but in a nationally recognized format for easy translation.

After establishing governance routines for asset data collection and management, the next phase of research would involve the security aspects of an agency’s data as well as the quality assurance measures applicable to grow confidence in the data’s quality. A full review of best practices for data security procedures could break the barrier of IT to asset manager. Additionally, once definitions and governance procedures are established, the quality assurance process becomes more stream-lined and gives better confidence to the decision makers.

● Guidance on establishing BIM data governance and quality standards to support asset management.
● Recommend standards for data transfer between data collection and asset management systems.
● Develop maturity scales for BIM implementation and establish appropriate maturity level for integration of TAM
● Research on BIM applications to support DOTs' data governance specific to the collection of data by one part of the agency can be used directly by other parts of the agency
● Evaluate cost effectiveness of collecting and managing data through BIM at a sufficient level of quality.
● Aligning the focused but detailed project-level data with network-wide but less detailed TAM data.

TRB Research Ideas – Data Quality/Standardization
• Data quality and confidence
• standardize terminology between different systems so singles source can inform GIS/500 reports/DELPHI/FMIS etc. so reports all use the same words or numbers the same way
• Updated asset type definitions and extraction methodologies.
• Performance Metrics for Assets other than pavement and bridge, i.e.. signals, signs, barriers, culverts
• Asset ratings biases, potential to rate lower to obtain funding

TRB Research Ideas – Data Governance
• Our largest challenge is data governance, feature collection and maintaining asset/inventory data
• Data governance is still looming large from an implementation perspective
• Data history, implementation and its security (both cyber and other forms of security)

Full NCHRP
Impact of Incomplete/Missing Annual Pavement Condition Data and Proposed Mitigation Strategies

Due to external stakeholder requirements and expectations (e.g., MAP 21 and FAST Acts) as well as internal DOT uses, DOTs typically collect pavement condition data (i.e., roughness, cracking and rutting or faulting depending on the pavement surfaces) on an annual cycle. However, disruptions of typical agency activities related to COVID-19 have resulted in data collection challenges, focusing attention on potential impacts of missing a data collection cycle. DOT may also face unforeseen workforce, contracting, data collection or processing challenges or other issues which could result in missed pavement data collection. In these cases, DOTs would benefit from understanding the range of potential impacts as well as potential mitigation strategies available to address these issues. Furthermore, in times of reduced budget, DOTs may desire to reduce the frequency of data collection, however they should be informed of the potential impacts of that decision.

1. Evaluate the impacts of incomplete/missing annual pavement data collection to various aspects of agency asset and performance management, including technical considerations, such as network-level condition summary and performance forecast, maintenance, rehabilitation, and reconstruction decision-making, and condition deterioration and treatment improvement modeling.
2. Consider the effect of incomplete/missing data on the organization and processes, such as federal performance reporting and transportation asset management planning requirements, as well as impacts to other internal and external stakeholders and decision-making processes.
3. Analyze and derive recommendations on mitigation strategies that DOT could implement to minimize the impact of incomplete condition data.

Proposed research activities include:
1. Conduct a literature review to document:
○ DOT motivations and/or requirements for annual data collection.
○ Potential technical and organizational impacts or issues associated with missing an annual data collection.
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs known to currently (or in the recent past) complete pavement data collection on a 2 or more year data collection cycle.
2. Building from the literature review, survey State DOTs to capture:
○ DOT motivations and/or requirements for annual data collection
○ Potential technical and organizational impacts or issues associated with missing an annual data collection
○ Techniques available to mitigate the impacts of missing the collection.
○ DOTs that currently (or recently) collected pavement data on a 2 or more year data collection cycle
○ DOTs which have previously missed their established collection cycle
3. Conduct follow up interviews/surveys with DOTs that have longer collection cycles or which had previously missed an annual pavement data collection to understand perceived vs. actual impacts (both technical and organizational) and any mitigation strategies they employ.
4. Summarize literature review, survey results and follow up interviews to guide ongoing research activities
5. From a representative set of DOTs, collect available pavement condition and work history data, pavement deterioration and improvement benefit models
6. Utilize collected data to complete a statistical evaluation of the impact missing a year of data collection with respect to forecasted vs. actual performance results, and ability to identify priority investment areas based on previous year’s data collection, as well as other issues identified through the survey
7. Identify potential strategies to mitigate the impacts of incomplete condition data
8. Document survey results and evaluation outcomes
9. Produce a technical report summarizing impacts of, and potential mitigations for, missing an annual pavement collection cycle
Desired products include:
● Detailed listing of current requirements and/or motivations for annual pavement data collection
● Summary of perceived and actual impacts of missing an annual data collection against the listed motivations, supported with a statistical evaluation of actual DOT datasets where applicable
● A summary of potential mitigation strategies that can be employed to reduce the identified impacts

Recommended funding of $250,000 includes $225,000 for a half-time investigator for 18 months.

Developing a Robust Education, Training and Workforce Development Program for TPM and TAM

TAM and TPM provide the foundation for performance-based investment decisions in transportation agencies at the federal, state, and local levels. Despite the fact that many transportation agencies have embraced the implementation of robust TAM and TPM programs to support their stewardship responsibilities, these topics are not typically incorporated into traditional education programs. In many cases, practitioners working in these areas acquire the skills needed while working on the job or take advantage of training materials available through various sources with limited support. Challenges with attaining skills, building competencies in an organization are compounded by knowledge succession needs with an aging workforce, tighter budgets, and uncertain in-person opportunities during an on-going pandemic, as well as evolving career expectations from skilled candidates in a globally competitive digital economy. A more accessible, efficient and attractive landscape of offerings, programs and career paths are needed to tackle the spectrum of training needs and challenges for effective TAM and TPM.
This study will explore cross-functional, multidisciplinary competencies, training needs in the TAM and TPM areas so that funding can be sought to streamline usage of existing opportunities, better integrate TAM and TPM principles within available programs, identify new skills needs driven by emerging risks or advancing technology, develop new training programs and partnerships needed. This also includes gaining an understanding of flexible, inclusive career paths to support innovation and productivity while improving return on training investment in a time of economic recovery. The study will inform AASHTO and TRB committees of existing gaps in training and recommend a strategy for addressing the gaps through a separate research study.
It is anticipated that this scoping study would be part of a three-phase research project:
• Phase I: Scoping Study for Developing an Education, Training and Workforce Development Program for TPM and TAM (this project)
• Phase II: Prototype and Testing of TPM/TAM Education, Training and Workforce Tools and Resources
• Phase III: Formal Development and Ongoing Support of TPM/TAM Education, Training and Workforce Tools and Resources

Task Description

Task 1: Define TPM and TAM Training and Education Needs
• Conduct a contextual and comprehensive analysis of the training needs for practitioners in TPM and TAM.
• Assess the knowledge, skills, and abilities needed by practitioners to perform their jobs well.
• Consider delivery methods in addressing needs.

Task 2: Conduct a Gap Analysis
• Summarize available training programs/materials in the US and abroad (notably Canada, Europe, Australia and New Zealand) and through other resources.
• Identify gaps between desired outcomes and current outcomes from available training and education.

Task 3: Develop Recommendations
• Summarize the findings from task 1 and 2.
• Recommend strategies for addressing the gaps.
• Present findings and recommendation in a final report.
• Prepare a Research Problem Statement(s) to develop the recommendations.
• Meet with the project panel to discuss recommendations.
• Incorporate changes into a final version of the report.

Better define the needs for education, training and workforce development related to transportation asset management and transportation performance management. Develop resources as needed for the following sub-areas:
Education—Writing curriculum for undergraduate and graduate courses
Training—For DOT and MPO staff in-depth career training, NHI, etc.
Workforce Development—e.g., TC3

No more than 15 months to complete the scoping study.
Additional time needed to establish the project with NCHRP.

AASHTO Committee Support
Implementation of NCHRP 08-118: Risk Assessment Techniques for Transportation Asset Management

Implementation of NCHRP 08-118: Risk Assessment Techniques for Transportation Asset Management

Implementation
Implementation of NCHRP 08-129: Incorporating Resilience Concepts and Strategies in Transportation Planning

Implementation of NCHRP 08-129: Incorporating Resilience Concepts and Strategies in Transportation Planning

Implementation
Implementation of NCHRP 23-06: A Guide to Computation and Use of System Level Valuation of Transportation Assets

Determining the value of a transportation organization’s physical assets is important for both financial reporting and transportation asset management (TAM). In financial reporting, determining asset value is a fundamental step in preparing a balance sheet for financial statements to inform regulators and investors. For TAM, presenting data on the value of physical assets, such as pavement, bridges, and facilities, communicates what an organization owns and what it must maintain. Furthermore, information about asset value and how it is changing can help establish how the organization is maintaining its asset inventory and helps support investment decisions.

Calculating asset value for TAM is not simply good practice; it is also required of state Departments of Transportation (DOT) by Federal regulations. Title 23 of the Code of Federal Regulations (CFR) Part 515 details requirements for State DOTs to develop a risk-based Transportation Asset Management Plan (TAMP). The TAMP must include a calculation of the value of National Highway System (NHS) pavement and bridges, as well as the cost to maintain asset value.

Recently NCHRP Project 23-06 was performed to develop guidance for calculating asset value to support TAM applications. This research resulted in the development of the Asset Valuation Guide. This document is intended as a companion publication to the Transportation Asset Management Guide published by AASHTO. The Guide is accompanied by a web tool with an online version of the guidance. The guidance was developed to provide immediate support to highway and transit agencies developing their 2022 TAMPs, and to provide continuing support for other TAM-related applications.

The objective of this implementation project support further testing and use of Asset Valuation Guide developed through NCHRP Project 23-06. This project will aid a set of transportation agencies in implementing the asset valuation guidance. A set of case studies will be developed based on the agency implementation efforts. Details on the case studies will be added to the web-based version of the asset valuation guidance and subsequent versions of the Asset Valuation Guide. Further, the web and printed versions of the Guide will be revised to reflect the additional experience gained from the case studies.

To support accomplishing the research objectives the effort will incorporate the following activities at a minimum:
• Delivery of a set of workshops to review and summarize the Asset Valuation Guide.
• Identification of a set of six transportation agencies to participate in implementation of the asset valuation guidance.
• Application of the asset valuation guidance for the selected set of agencies, resulting in calculation of asset value by asset class, the cost to maintain asset value and related measures such as the Asset Consumption Ratio, Asset Sustainability Ratio and Asset Funding Ratio.
• Illustration of how information on asset value can support improved TAM decisions.
• Refinement of the Asset Valuation Guide (printed and web versions) based on the results of the case studies.
• Development of supplemental tools and worksheets to assist in calculating asset value to support TAM utilize the Asset Valuation Guide.

Implementation
Integrating Risk and Resilience into the Performance Management Decision-Making Process

This program will establish a series of individual research projects born out of NCHRP 23-09, Scoping Study to Develop the Basis for a Highway Standard to Conduct an All-Hazards Risk and Resilience Analysis. Similar to other NCHRP research programs such as NCHRP 20-102, Impacts of Connected Vehicles and Automated Vehicles on State and Local Transportation Agencies, this is a long-term research program that will result in an industry standard for all-hazards risk and resilience analysis for use in decision-making. The product of this research program will be a collection of tools and techniques that transportation agencies can for all-hazards risk and resilience analysis similar to what has been produced for the Highway Capacity Manual and the Highway Safety Manual.

Integrating Risk and Resilience into the Performance Management Decision-Making Process

Refinement and Evaluation of Policies, Procedures and Requirements Related to the National-Level Asset Management Performance Measures (PM2 Measures)

Evaluate and assess the existing national-level performance measure requirements for asset management at the state level to determine applicability and usability of PM measures in asset management decision making. As appropriate, provide recommendations and refinement of the performance measures for better use an application.

1. Evaluate current federal PM2 measures, both pavement condition measures and bridge measures, for performance thresholds, and overall performance measure with respect to: Consistency, Usefulness, and Alignment.

2. Identify and address in detail specific challenges for each condition measure for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 3. Provide recommendations to improve existing measures and/or identify metrics that better reflect conditions enhance decision-making taking into account not only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation.

NCHRP 20-24(20), 20-24 (97), 20-24 (127)
NCHRP 20-24(37): This project, Measuring Performance among State DOTs: Sharing Good Practices, put in place a foundation on which the first set of national performance measures were created. A similar program needs to established on which to further develop relevant national-level performance measures.

Full NCHRP
Synthesis on Advancing Technology in Asset Data Collection

Emerging technologies hold the promise of transforming asset data collection for transportation asset management such as the use of drones for inspections, LiDAR field data collection, continuous monitoring of real-time sensor data, and more. While the technology has been transforming, MAP-21 and the Fast Act jump started at many agencies in attaining an inventory of infrastructure assets and transportation data. At the same time, accessibility and affordability to collect high volumes of asset inventory data, such as LiDAR point cloud data, present the problem of how agencies can visualize and manage such large amounts of data and integrate the many layers for each transportation asset management plan. Now that the need for such data is federally recognized, further research is needed to understand what the latest technologies for asset analysis can offer an agency as well as how frequently that information needs generated.

Research is needed in the following areas:
● Address the adoption and practical application of these technologies and the rapid pace of technological advancement.
● What level of extraction detail and frequency interval is needed to support TAM at both the state and local levels and how can the condition assessment be applied to the performance measures of both pavement and non-pavement assets?
● Further investigate what tools are capable of visualizing asset extraction layers, as well as presenting such data to all stakeholders in powerful GIS formats with standardized TAM graphics for universal interpretation.

• Identify tools (online forum, listserve, or others) to facilitate the community of practice.
• Create practitioner consortium database
• Webinars to build awareness
• Facilitation/moderation to foster the community of practice
• Report on lessons learned and successful practices identified through the community of practice
• Examine the consistency of the underlying data that goes into bridge/pavement data collection

This project proposes the establishment of a community of practice for asset management data collection rather than the creation of a traditional research report.
• The mission of the community of practice will be to articulate strategic, operational and tactical business needs relevant to emerging technologies for asset data collection and to recommend improvements to business processes, data, and information systems to meet the highest priority needs.
• The community of practice will seek to connect the experts and build the network to move the state of practice forward more effectively and efficiently
• The project will seek to foster the community of practice so that it is sustainable beyond the conclusion of this research

Synthesis
AI and Deterioration Modeling

This research project would aim to develop a Primer or Guidance document to help agencies tasked with managing infrastructure (including pavement and bridges) to assess their current data, data collection processes, and data needs to best position them to be able to take advantage of burgeoning artificial intelligence techniques to develop increasingly accurate predictive models regarding their infrastructure.

The quality of data is extremely important – “garbage in, garbage out” - and quality of data in terms of accuracy and precision is already getting much needed attention. However, while many agencies are actively improving collection of accurate and more data, collection the right quality data for accurate and precise prediction requires an additional level of scrutiny.

Collection of more accurate and precise data will undoubtably increase the accuracy of predictions, accurate predictive modeling also relies on understanding the underlying variables that affect the predictions. For example, variables that might affect the structural deterioration (for instance in the next time period) of an infrastructure element such as a pavement management section, might include:
- Structure information such as layer thicknesses and materials
- Environmental conditions such as temperature means and variation, rainfall etc.
- Load information such as traffic and truck traffic
- Current condition such as current cracking, rutting and roughness information
- Current condition such as layer properties and structural strength
- Information on previous maintenance, rehabilitation and reconstruction actions

Similar attributes would be considered significant variables for deterioration prediction in bridges, and this would also apply to many other non-bridge, non-pavement types of infrastructure assets.

Statistical analysis of this type of data for predictive analysis purposes is not new and Analysis of Variance (ANOVA) techniques have been used in this area for decades. However, with the advent of automated data collection techniques and with the quantity of available data growing at a considerable rate (so called ‘Big Data’), various types of AI such as artificial neural networks (ANNs) and deep learning techniques, are beginning to supersede some of these traditional statistical techniques. The ‘training’ portions of these techniques will require accurate and repeatable data as well as information on significant variables.

In addition, one the most valuable aspects of AI is the ability these types of techniques to continuously learn and improve. In this respect, it is again very important for agencies to understand how this learning could be accomplished, not just initially but continuously over time, using processes that involve continuous updates (e.g. through crowd sourcing). Agencies would therefore benefit considerably by having guidance available to help them set up their data capture and governance techniques to best benefit from AI modeling, training and continuous learning in the future.

Ideally, an agency would collect data that has the necessary attributes to facilitate an AI analysis and have processes in place that would allow continuous learning such that predictive modeling for the agency would continue to be trained and improved as the AI continued to learn. The current reality is such that condition data that is being collected may not be easily utilized in an AI analysis. The consequence is that the complicated decision-making process that highway agency executives depend upon may not be producing the level of accuracy in condition and funding projections that is required to make funding decisions in their investment strategies.

Full NCHRP
Guide to Promote the Use of Performance-Based Decision Making in Maintenance
Real Option Methodology for Risk Assessment in Asset Management

The Real Option method allows infrastructure owners to evaluate the advantage of options that an infrastructure manager has over time. As time passes, a manager will have the ability to intervene as as an object may deteriorate at a faster rate than expected. Likewise, a manager may postpone a planned intervention if the condition is better than expected. In addition to the option to defer, a manager may have the option to expand or contract the infrastructure or the infrastructure network, as well as to shut it down temporarily, abandon it, grow it or switch it (de Neufville and Scholtes, 2011).

The options provide an owner with the flexibility adapting the infrastructure to uncertain future needs. Owners, thus, neither under-, nor overinvest and consequently minimize the risks of their decisions. The external factors affecting risk include weather events, condition development, system demands, funding and other critical variables. The methodology proposes a way to systematically analyse and define these uncertainties and make predictions taking the defined uncertainty fully into consideration.

Real option valuation is known using binomial lattices (a form of decision trees) and/or Brownian motion random walk algorithms. Infrastructure life-time net benefits can also be calculated by simulating the uncertainty using continuous Monte Carlo simulations. Using different stakeholders’ costs of different design alternatives and management strategies, the costs can be calculated over a large sample of potential futures. The methodology is able to address multiple levels of risk and weight them as necessary and thus make multi-objective, cross-asset investment decisions under uncertainty to best support the national goals identified in 23 USC 150(b).

The ultimate objective is to provide the decision-maker with tools that add value to the decision-making process and improve the robustness of the infrastructure network as a whole. In that sense, novel approaches for the evaluation of risk will be sought to capture the stochastic nature of interdependent infrastructure. A graph theory approach to evaluate criticality of network node failure as shown by Buldyrev and colleagues (2010) may prove interesting for the evaluation of consequences, and thus the real option value for the infrastructure, simulated by network programming methods.

The application and evaluation of a large sample of data and data simulations is computationally challenging. Furthermore, decision-making tools are urged to be simple and understandable. As big data may improve predictability and performance of models, strong emphasis must be laid on the usability of such models. In this project, it is suggested that particular focus will be on addressing these challenges with the outlook of combining big data and the model’s user interface design.

References:
Buldyrev, S. V., R. Parshani, G. Paul, H. E. Stanley and S. Havlin (2010) Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-1028.
de Neufville, R. and S. Scholtes (2011) Flexibility in Engineering Design, Engineering Systems, MIT Press, ISBN 978-0262297332.
Savage, S. (2012) The Flaw of Averages: Why we underestimate Risk in the face of Uncertainty, Wiley, ISBN 978-1118073759.
Prof. Dr. Rade Hajdin, July 2019

The ultimate objective is to provide the decision-maker with tools that add value to the decision-making process and improve the robustness of the infrastructure network as a whole. In that sense, novel approaches for the evaluation of risk will be sought to capture the stochastic nature of interdependent infrastructure. A graph theory approach to evaluate criticality of network node failure as shown by Buldyrev and colleagues (2010) may prove interesting for the evaluation of consequences, and thus the real option value for the infrastructure, simulated by network programming methods.

CC - Improve Asset Performance by Bundling Capital Projects

Research effective corridor planning strategies that promote sustainable capital asset improvements that impact asset class performance and other performance areas.

Full NCHRP
Risk Analysis and Vulnerability Practices Across Transportation Agencies

This research should:
• Identify pertinent data sources, data types, as well as relevant collection and analysis methods employed by transit agencies.
• Provide a synthesis of examples or State of the Practice applications for MPOs/DOTs.
• Outline communication strategies to the relevant decision-makers.

The proposed research must consist of:
• An extensive literature search or survey of the current body of work.
• A survey of agencies’ practices and the cultural effects of those practices on both agency members and the general public.
• A series of webinars and/or workshops aimed at facilitating increasing knowledge regarding risk analysis practices in transportation
• A final report as well as an executive summary summarizing the findings of the various practices at different agencies, as well as the content of the webinars and/or workshops.

System Level Asset Valuation

The objectives of this research are to examine methods for evaluation of system assets. Thorough research should:
• Identify international practices and determine how they can be applied in the US
• Better marry engineering and accounting in financial planning
• Demonstrate benefits through a case study (may be fictional)

The proposed research will have the following deliverables:
• A literature review, and well as a review of current practices.
• A tool to assess the functionality of the current practices of American agencies, as well as compare those practices to their overseas counterparts.

Aligning the Organization for TAM

The focus of this research is to support a scan tour or peer exchange addressing organizational alignment for TAM. This falls into three distinct but equally necessary categories: a review of previous knowledge, a inter-agency gathering to assess differing organizational models and policies to TAM, and finally a report or summary of the findings.

As outlined above, the first component of the research is a literature and practice review, which should include:
• A Catalogue of Candidate Practices
• Template Organizational Charts that support comparison of alternative models

The inter-agency scan workshop must focus on bringing together agencies that can speak to distinct organizational models. The first step is to identify candidate agencies to participate in scan. Next, draft amplifying questions to guide discussion toward identification of what led to successful practices. Finally,
conduct the workshop and document results

The final summary report must document the findings of the workshop, such as successful practices in aligning organizations to support transportation asset management and linking operational activities to organizational structures.

Conduct Regional and National Peer Exchanges FHWA
Synthesize Best Practices for Internal Staff Development

Synthesize best practices for workforce development and training in order to enhance the capabilities of a TAM team/staff or attract internal staff to become involved in TAM program/implementation.

Synthesis
Create Catalog of Condition Assessment Protocols

Document and provide examples of condition assessments for all types of assets.

Full NCHRP
Develop TAM Big Data Case Studies

Create case studies addressing noteworthy applications of big data analytics to TAM.

This is a note test.

Full NCHRP
Incorporate Change Management into TAM Implementation

Develop a framework, recommended actions, and synthesis of noteworthy practices for agencies to use in incorporating change management strategies in TAM practice.

AASHTO Committee Support
Causes and Effects of Transportation Data Variability

• State departments of transportation (DOTs) and metropolitan planning organizations (MPOs) across the United States are required to establish performance targets as part of their asset management efforts. The target- setting requirements for transportation performance management (PM2) of pavement and bridge condition generally require agencies to consider three factors; the measured condition of the assets, expected deterioration over time and project level accomplishments. The measured condition of the asset is the ultimate measure of progress and an effective way for agencies to demonstrate that they are making progress as required by federal regulations.
• Research assessing the consistency of National Bridge Inventory (NBI) condition metrics has found variability between individual inspectors when inspecting “control bridges” for study. In other words, there is the potential for any given bridge inspector to assess the current condition of same bridge differently. This variability means that the conditions of bridge could improve in the absence of a project just by having a different inspector interpret the field condition differently. A similar potential exists for pavement condition assessments. This demonstrates the potential inconsistencies due to human interaction, but the same could be true of technologies if applied or calibrated differently across agencies.
• Pavement and bridge conditions rely on assessment methods that are subject to variability from one assessment to the next and from one assessor or one technology utilization to the next. This variability may occur in the absence of projects or significant field deterioration. This research project would attempt to evaluate the impact of condition assessment variability on agency wide target setting required for asset management.

The outcome from this effort will benefit quality assurance (QA) methods for data collection and inspection efforts, quantify the variability and sensitivity in target setting for DOTs, and help budget planning for asset inconsistencies.

• Review and summarize existing published research related to the
• consistency of field-assessed pavement and bridges whether based on human interaction or applied automation, and include a review of training programs associated with human and automated assessments. Additionally, review research on the impact of assessed condition variability on target setting.
• Review NBI and Highway Pavement Monitoring System (HPMS) submittals over multiple years to identify examples of spontaneous improvement or rapidly changing conditions from one assessment to the next and assess the sensitivity of condition assessment variability on target setting in transportation asset management.
• Develop a methodology and guidance manual to define the uncertainty associated with variability in condition assessment when setting asset management targets and provide means to rectify inconsistencies in the assessments when they appear.

• According to FHWA’s transportation performance management (TPM), the purpose of transportation asset management is to provide the most efficient investment of funds. This decision-making is being based on data that is subject to variability. Understanding and quantifying (if possible) the impact of data variability will allow federal, state, and local agencies to recognize the importance of data quality and how it might impact their ability to deliver projects and strive for the national transportation goals. The outcomes and benefits are:
o Showcase the importance of quality and consistent data collection methodology
o Tie the data to decision making and funding
o Evaluate the impact of condition assessment variability on agency wide target setting
o Highlight progress on 490.319(c) Data Quality Management Program
o Provide states and federal a baseline expectation for changes in annual variability in measures, failure to reach targets, and/or best practices to avoid data quality issues.

• Since the performance measures are consistently tied to specific data inputs, each state could use this research to understand the potential volatility in target setting and performance measures. The summary of best practices and pitfalls will also allow transportation agencies and vendors to improve inspection protocol. Testing of the data should be a part of the research, with a few select agencies comparing potentially the same data in a single year across multiple sources or reviewing the historic trends of individual data pints to highlight inconsistencies and the impact of those inconsistencies to overall measures and targets.
• This research would best be shared in an open forum or webinar so all agencies and consultants tasked with data management can obtain the information. The AASHTO Performance Management Committee should be interested in supporting this research to ensure that the performance measures produced by transportation agencies are of the highest quality.

400000 12 months Full NCHRP
Organizational and Cultural Factors for Successful TAM Implementation

Research is needed addressing the question: “What are the organizational/cultural factors that were in place before and/or during implementation that created a successful TAM program?” Develop a guidebook to convey lessons learned. Key point: must use an organizational development or similar consulting firm. Not the usual suspects!

The proposed research be composed of the following components:
• Conduct a literature/practice review of the relevant information
• Identify organizational practices and determine how they can be generalized to support guidance
• Develop guidance for agencies
• Demonstrate/evaluate guidance through at least one case study
• Produce a final report including an accessible executive summary

Transportation Asset Management and Overall Transportation Management

This research will focus on understanding TAM’s relationship to other transportation goals such as economic development, safety, environmental sustainability, mobility, and livability. Two products are sought through this research: 1) Framework for understanding the relationships between TAM and broad transportation goals. 2) Guidance on how to ensure TAM connectivity to broad transportation goals throughout the transportation decision-making cycle.

As part of this research, the contractor will research domestic and international frameworks for TAM’s relationships with broad transportation goals. These frameworks should be described in sufficient detail with visuals aids to communicate these relationships. The contractor will work in cooperation with the project panel in identifying the best framework for communicating the relationship between TAM and broad transportation goals. Based on this interaction with and feedback from the panel, the contractor will then develop guidance on how these relationships can more explicitly be used during the planning, programming, project delivery, and maintenance/operations process to maximize TAM benefits. Other issues that should be considered include the following: (1) What are the performance measures for understanding the relationships; and (2) are there quantitative ways to demonstrate how these relationships can be influenced?

Organizational Models for Successful Transportation Asset Management Programs

This research will focus on understanding successful organizational models for TAM program so that guidance can be provided on how to improve organizational capacities. Two products are sought through this research: 1) Understanding of current organizational models for TAM programs 2) Catalog of possible organizational models for TAM programs that transportation agencies could consider for improving TAM capabilities.

As part of this research, the contractor will research domestic and international models for TAM program organizations and develop a set of models that represent the various approaches. These models should be described in sufficient detail with diagrams for DOTs to use to improve TAM program organizations. The contractor will work in cooperation with the project panel in identifying the best organizational models for TAM programs that an agency should consider when seeking improvements for their TAM programs. Based on this interaction with and feedback from the panel, the contractor will define at a minimum four distinct organizational models for TAM programs. These models need to be described in sufficient detail with diagrams and key role descriptions. Other issues that should be considered include the following: (1) How to balance accountability versus collaboration; and (2) how would you measure the effectiveness of one model versus another?

Forecasting the Financial Needs for Transportation Assets – LCC Model

The objective for this research is to examine the costs and value associated with maintaining assets, and then to develop a usable model for forecasting the cost and value. Such a model must include, but not be limited to:
• A framework for quantitatively assessing the value of an asset that has been properly maintained.
• A tool for calculating the long-term costs of maintaining an asset, in line with industry standards for safety and reliability.
In addition to developing the model, the research should also establish guidance targeted at helping practitioners conduct forecasting analyses and communicate the results.

The proposed research will:
• Conduct a literature review, and well as a review of current practices.
• Develop a forecasting model for the costs and value of maintaining assets, as described in the objectives.
• Perform a series of pilots illustrating the effectiveness and usefulness of the model.
• Prepare a final report incorporating the guidance document and detailing the research performed as part of the project

Improving Asset Inventory and Reducing Lifecycle Costs through Improved Asset Tracking

The proposed research will:
• Evaluate various technologies for tagging and tracking assets and capturing asset history. Each proposed tracking technology should be evaluated for various factors, such as cost, ease of use, efficacy, and time required to implement.
• Create a standard for transportation asset tagging and tracking that can be used intermodally and across agencies.
• Develop a business case to demonstrate the lifecycle savings that can be achieved by transportation entities. This case study may be fictional if a suitable real-world example cannot be identified due to the new nature of the technologies.

The research plan should:
• Evaluate current technologies for the various criteria that denote a usable solution for assent inventory and tracking
• Propose fit-for-use of technology type by asset class. A single technology may not be suitable for all classes of assets, so categorizing
• Establish policies and protocols for capturing asset data
• Develop lifecycle costing models for use of asset tracking/ tagging technologies

Guidance for Tracking Critical Data Items to Reduce Asset Lifecycle Costs and Support Treatment Decisions

The proposed research will:

  • Identify and classify data items required to inform the maintenance and rehabilitation of different asset types.
  • Determine the degree of relevance/criticality of select data items towards treatment decisions.
  • Identify the level of detail required for asset management decisions at both the project and network level.
  • Construct sensitivity analyses between data elements and infrastructure performance to explore the relationships that exist between them. This would also justify which data items are worth investing more resources into in order to mitigate uncertainties in developing long-term infrastructure preservation plans.

The research plan should:

  1. Conduct a literature review of relevant studies and practice within the scope of the research problem.
  2. Conduct a survey of current practices by planning agencies and state departments of transportation (DOTs) on current data availabilities and their use for decision-making
  3. Perform an in-depth case studies involving the management and application of critical data items to support infrastructure management decisions, particularly around key assets such as pavements.
  4. Develop a consolidated list of data elements and the level of detail required to support treatment decisions.
  5. Propose a method to identify the data that are critical to predict the infrastructure performance. The method should include but not limited to the plan of data collection, data mining, data analysis, model development and validation process.

    References:

Methodology to Perform Dynamic Changes to Treatment Plans when Delays Occur

The proposed research will first develop a methodology that will allow dynamic changes to treatment plans. Then, the research must test the methodology, as well as identify and quantify cost savings benefits of using the methodology or tool.

The research plan should:
• Contain a literature review- focused on treatment timing, methodology, and successful dynamic processes
• Select the promising methods to test using the proposed methodology
• Quantify benefits and cost benefits of the different methods

Comparison of ISO Framework and Legislative Requirements for Asset Management Plan

Identify linkage between ISO standards and MAP-21 TAMP requirements. Identify gaps or inconsistencies and propose solutions. The proposed solutions may include guidelines for agencies, research needs, modification to the standards, or agency specific standards that address agency specific needs.

The project will include at least the following tasks:
• Literature search of directly relevant standards
• Identification of gaps and issues between ISO standards and MAP-21 requirements
• Propose solutions, develop guidance, recommend modifications to standards
• Identify and report on several case studies

Guidance in the Development of Communication Plans and Asset Management

The focus of this research can be divided into three main categories. Firstly, prior information must be collected and organized. This is accomplished through:
• Case studies and examples of best practice
• Creating a synthesis of state’s best practices
The next step is to build tools that allow for better asset management marketing, such as:
• Communication, sales, and/or a media science application to help craft a way to tell the story
• Creating a marketing plan that can be used to educate and train
• Training to Speak a language that all can understand
• Communicating the secondary benefits of TAM
Finally, follow-ups of the methods must be conducted to measure efficacy. This could include examining:
• How effective are the marketing and communication? Is the message being received?
• How has public perception changed?

A developed and complete research plan must focus on the three main categories of research. There must be a review of international and domestic best practice. This should include relevant existing guides and past work, such as NCHRP 742: Communicating the Value of Preservation. Focus groups and piloting of stakeholders should be formed to do media/communicate/develop sales techniques to frame topics to best to change minds
After these focus groups, a tool kit should be developed that addresses a multi-level audience. Finally, follow-ups should assess the effectiveness of the marketing plans or communication skills, and monitor techniques for continuous improvement.

Infrastructure Needs for Autonomous Vehicles

The objectives of this research are to quantify the expected abilities of autonomous vehicles, to establish an expected timeline of integration within the greater transportation networks, and to examine what infrastructure changes are most beneficial for autonomous vehicles.
The capacities of autonomous vehicles are not yet quantified. The research should:
• Determine what types of roads are suitable for such vehicles.
• Examine safety for both drivers/passengers, and other users of the roadways, such as pedestrians and cyclists.
• Explore limitations, such as fog or extreme conditions.
• Establish a timeline for adoption. Since the technology is expected to change rapidly, current capabilities will change.
The infrastructure requirements for autonomous vehicles are greatly dependent on the capabilities of the vehicles. Nevertheless, certain changes can be expected to improve the safety and usefulness of the vehicles, such as:
• Repainting roadways to help the vehicles operate.
• Installing RFID that could communicate with the vehicles directly.
• Determining what challenges would face a mixed-stream road of autonomous vehicles and vehicles under driver operation.

Research into this area requires surveying all the major players involved in the development and implementation of autonomous vehicles.
• Survey of industry on current and future plans and timeline to implementation, as well as quantifying the current and future capacities of their vehicles.
• Survey DOTs to determine capabilities and gaps in the existing infrastructure.
• Survey of industry on what changes to the road networks would have the greatest impact of ease of implementation and safety of autonomous vehicles.
After the surveys are completed, a conference with the players would validate the findings of the surveys, and generate a report as well as an executive summary.

How to Recruit, Train and Maintain a TAM Staff

The primary focus of this research is, at a most basic level, to help agencies strengthen their work force. This should be accomplished by researching areas where:
• Agencies lack a comprehensive list of necessary skills for a given position
• Agencies lack a comprehensive list of which positions are most critical to keep fully staffed. In an era of shrinking budgets, effectively prioritizing hiring decisions is crucial.
• There is a gap in knowledge regarding existing certifications.

The research plan for this project must include, but need not be limited to:
• A complete review of existing certifications.
• Completing competencies
• Developing position descriptions for use when advertising vacant positions
All of this data should be compiled in a detailed report, as well as a succinct executive summary that is accessible to all decision-makers.

Guideline for Cross-Jurisdictional Asset Data Integration

The research should focus of two primary areas of focus. The researchers must develop a guidebook for data integration across jurisdictional lines, as well as review the existing standards for civil data. This could include projects such as Civil Integrated Management (CIM) and the researchers must document the positive and negative ramifications of the various standards.

The research plan must consist of:
• A thorough and comprehensive review of existing standards. Due to the nature of integrating data across various platforms, all the types of data management must be well accounted for to ensure proper integration.
• Developing a guidebook. This should be the primary tool that an end user would utilize to determine how to best integrate their data across jurisdictions.
• Planning a pilot program. Ideally, a pilot program would be implemented and then analyzed for success, but at a minimum, a comprehensive plan for an initial test of the data integration framework must be completed.

Develop Approaches for Corridor Planning and Allocation

• Asset conditions are typically determined currently in separate silos - leading to asset treatments that are applied on varied schedules by asset (pavement, bridges, culverts) even over the same corridor.
• Significant resources may be misallocated on treatments applied at the wrong time due to lack of coordinated corridor planning.
• Corridor planning can organize the asset treatments — while also looking at environmental issues, congestion, and safety
• There may be other issues such as operation needs in a corridor as well.
o “Project delivery” can be achieved more efficiently because projects are organized into a corridor delivery strategy. Projects can be peeled off as funding is available
o Public can be engaged all at once instead of multiple times for multiple projects.
o Minimize contractor costs

Develop guidance on an asset management corridor planning process to prioritize and schedule project delivery for cost effectiveness while also considering mobility/accessibility issues, drainage, and more.

• Conduct a review and evaluation of existing agency corridor planning processes with respect to transportation asset management
• Synthesize noteworthy practices in asset management corridor planning
o Identify potential case studies targeting specific corridor planning scenarios
o Develop a framework for corridor plans that can be applied for better asset management and resource allocation
• Conduct targeted stakeholder outreach (interviews or similar) to validate and further develop noteworthy practices and framework (consider whether research statement addresses inclusion of international practice)
• Develop asset management corridor planning guide outline and complete how-to guide
o Identify steps for agency necessary to address, for example: potential project areas; asset inventory/proposed treatment schedule; traffic volume/transit analysis; land use inventory and future land use; drainage issues; financial resources, schedule and coordination).
o Identify candidate case studies
• Drawing upon review and outreach efforts, develop 3-6 case studies for inclusion in the guide
• Plan and deliver three regional workshops to present guide and framework and advance corridor planning at DOTs/MPOs

• Asset management corridor planning how-to guide including case studies
• Workshops to introduce guide and advance corridor planning

350000 18 months Full NCHRP
Engage Stakeholders in TAM

Agencies have made progress in implementing TAM within their agencies. The impact of TAM will be much greater if stakeholders are engaged as a part of the decision-making and TAM approaches were collaborative for given geographic areas.

Develop communication tools and methodologies for engaging stakeholders in TAM program activities such as strategies development, performance management implementation, and budget development.

• Collect existing documentation of best practices related to TAM stakeholder engagement and communication
• Consider conducting a synthesis of practices used by agencies to communicate successfully the importance and value of TAM
• Package communication and other engagement resources from existing examples in a way that makes it possible for other agencies to use it for their stakeholder communication and engagement needs
• Assess the stages of maturity in communication and engagement and determine what actions and resources are most relevant to advance practice given current practices
• Develop guidance on when stakeholder engagement is important and what processes and products are most useful at each engagement opportunity
• Develop new resources that support the guidance

• Communication portfolio that allows asset owners/managers to draw on best practices from others during TAM program activities to engage stakeholders
• Stakeholder communication and engagement guidance

300000 18-24 months Full NCHRP
Support Data Governance Implementation

• Recent NCHRP research products have documented data governance techniques and provided tools for agencies to assess their current data governance practices and identify strategies for improvement.
• NCHRP 08-115 (publication pending) included data governance as one of several foundational activities for improving use of data and information for transportation asset management. An NCHRP 20-44 proposal is in process to conduct pilot implementations of the guidance and assessment tool developed through that project, and produce supplemental guidance materials based on the pilots.
• Many DOTs are implementing data governance – through establishing governance bodies, defining data stewardship roles and putting standard processes in place. The AASHTO Data Management and Analytics Committee has established a Chief Data Officer (CDO) peer group to enable ongoing sharing of data governance practices.
• This project would build on the established base of prior and ongoing work on data governance. It would focus specifically on providing specific examples or models that can be applied to help advance asset management practice through data governance.

Provide support to implement the data governance practices and processes recommended through NCHRP 08-115, Guidebook for Data and Information Systems for Transportation Asset Management.

• Conduct outreach to identify implemented examples of transferable TAM-related data governance practices. These might include:
o role/responsibility descriptions for asset data stewards and asset management system owners,
o charters for TAM advisory bodies or governance groups,
o asset data-related policies or guidance documents,
o flowcharts or process descriptions for initiating new asset data collection efforts,
o work products related to establishment of data glossaries, catalogs or standards,
o asset data quality management plans or process descriptions, and
o asset data MOUs or agreements.
• Conduct a series of follow-up interviews to document the processes by which each of the identified examples were developed, and to seek permission for sharing the examples.
• Make the documented examples accessible (via the AASHTO TAM Portal and/or the AASHTO Data Management and Analytics Committee website)
• Conduct a webinar highlighting selected examples – featuring the DOT staff who were involved in their implementation.
• Recommend an ongoing mechanism for periodically refreshing the body of examples collected through this effort.

• Library of documented examples
• Webinar slides and recording
• Recommended approach for ongoing updates to the body of examples

150000 12 months Implementation
Assess Benefits Realized from TAM

• It’s difficult to communicate the value of an asset management approach to the public.
• In many cases agency leaders and stakeholders, including the public, may not see discernable benefits from TAM, reducing support for a preservation-focused investment strategy and/or improved systems and data required to support a TAM approach.
• Research has been performed in the past regarding how to calculate the return on investment (ROI) of TAM systems and how to communicate the value of preservation. Also, private sector entities use a separate set of approaches for evaluating the benefits of providing transportation as a concession.
• Additional research is needed to quantify the benefits of TAM generally, and incorporate consideration of other factors such as sustainability, equity, resilience, etc.

Develop a framework and guidance for calculating and communicating the overall benefit of improved asset management approaches to transportation agencies, transportation system users, and society of improved asset management approaches. The framework should address monetized benefits, as well as issues such as equity, sustainability, and resilience. Illustrate use of the framework and examples through a set of pilot studies of U.S. agencies.

• Literature and practice review
• Develop TAM benefit framework
• Prepare guidance for implementing the framework
• Perform a set of pilots to test and refine the guidance, as well as to help illustrate the benefits of TAM
• Provide updated examples of effective communication of TAM benefits
• Prepare a guidebook detailing the framework, guidance, pilots and communication examples.

• Guidebook for calculating and communicating the benefits of a TAM approach
• Spreadsheet or web-based tool transportation agencies can use to perform their own calculations following the guidance.

250000 18 months Full NCHRP
Develop Methods to Allow Agencies to Incorporate Quantitative Risk Assessment at Project and Network Level

Managing risk is a critical component of asset management. On a day-to-day basis transportation asset managers spend much of their time responding to or mitigating a large number of risks, which may range from external events that damage transportation infrastructure to unplanned changes to budget or workloads resulting from unexpected events. Various recent and on-going research efforts aim to improve approaches for risk management for transportation agencies. However, most of these efforts treat risk management as a high-level activity. Further research is needed to develop quantitative, repeatable approaches at the appropriate staff level, to assessing and identifying the highest priority risks transportation agencies face in managing physical assets. This project aims to develop such approaches to assess risks (e.g., financial, strategic, operational, political, environmental, technological, social justice risks) and incorporate them into life cycle analysis and planning efforts.

The objectives of this research are to:
• Generate risk identification techniques to determine high risk threats at project and network levels,
• Develop quantitative, repeatable approaches for assessing likelihood and consequences for these threats,
• Develop visual, interactive characterization methods (e.g., dashboards) to reflect an agency’s level of risk and the effectiveness of proposed mitigation actions,
• Allow risk and resilience to be on par with traditional performance measures.

High risk threats to be studied include, but are not limited to, extreme events (e.g., earthquakes, fires, hurricanes, avalanches, tornadoes), asset failure (structural and operational), financial, strategic, political, environmental (e.g., sea level rise, flooding), technological, and social justice risks.

The final deliverables could include guidebook with a spreadsheet or a framework for assessing high risk threats and incorporating the results into TAM efforts. The guidebook should feature a comprehensive review of existing literature and current practice. It should present a standard definition of resilience as well as step-by-step instructions to develop models, methods, and metrics for estimating resilience of highway systems to high risk threats. Pilot studies should be conducted with select agencies to test the guidance and calculation procedures.

The target audience for the research results is asset management and risk-management champions at state and local government transportation agencies. The results of this project will potentially empower these individuals in convincing other decision makers in these agencies to take actions that not only align with traditional performance management objectives but also that result in lower risk and higher resilience for the whole transportation system. The results of this project can also be effective in communicating the rationale behind risk-based decisions to the general public. Due to legal implications of identifying and documenting risks, the research and final product should include advice on how to protect the agency from litigation if they cannot implement a recommended action.

Risk assessment is at the core of implementing a risk-based asset management approach. Therefore, FHWA and AASHTO view this as a subject of great importance. In addition, risk management cuts across all areas of a state DOT’s business and just about any AASHTO Committee and any state DOT and local agency could realize benefits from these research results.

450000 12-18 months Full NCHRP
Evaluate Federal Measures and Metrics for Pavements

The Moving Ahead for Progress in the 21st Century (MAP-21) transportation bill established federal regulations that require each State Department of Transportation (DOT) to develop a Transportation Asset Management Plan (TAMP), and implement Performance Management. These regulations require all DOTs to utilize nationally defined performance measures for pavements on the National Highway System (NHS). These nationally defined performance measures (referred as PM2 hereafter) are aimed at providing nationally consistent metrics for DOTs to measure condition, establish targets, assess progress toward targets, and report on condition and performance. Furthermore, Federal measures provide the Federal Highway Administration (FHWA) the ability to better communicate a national performance story and to more reliably assess the impacts of Federal funding investments.
State DOTs are expected to use the information and data generated from these Federal measures to inform their transportation planning and programming decisions. However, State DOTs are finding discrepancies between pavement conditions from PM2 measures as compared to their internal, state-developed measures. This discrepancy hampers the adoption of the PM2 pavement measures as the primary input into condition summary reporting and pavement investment prioritization and decision-making. In other words, State DOTs do not have confidence in the Federal measures, primarily because these measures cannot be used to inform decision-making processes such as investment decisions. Furthermore, the resulting differences between state metric-determined and federal metric-determined network conditions creates confusion among the public, senior executive staff, and legislative bodies, along with non-DOT owners of NHS assets.
As mentioned before, FHWA needs to collect consistent Federal measures across all State DOTs to assess the impact of Federal funding investment at the national level. However, State DOTs have been collecting pavement performance data for decades and used this data to inform their pavement management systems and processes to address specific needs. Typically, the data collection processes cover state-owned pavements and not only NHS pavements, which brings another layer of inconsistency. For this reason, there is a need for more flexible metrics that can be aligned to performance measures currently used by State DOTs and support decision-making processes such as investment decisions.

The objective of this research is to:
1. Evaluate current federal pavement condition measures (Ride Quality, Rutting, Faulting, and Cracking), performance thresholds, and overall performance measure with respect to:
a. Consistency – across various pavement types, network designations, and lane configurations
b. Usefulness – in network-level pavement condition summary and asset management decision-making, prioritization, and forecasts; and
c. Alignment – with state established pavement condition metrics

2. Provide recommendations to improve existing measures and/or identify metrics that better reflect pavement failure mechanisms and enhance decision-making taking into account not
only the assessment of current and future condition but also their implications in economic analyses of long-term maintenance and rehabilitation. Evaluate pavement leading indicators as an alternative to the current version of the PM2.

3. Identify and address in detail specific challenges for each condition measure (Ride Quality, Rutting, Faulting, and Cracking) for consistency, including thresholds. For example, determine if wheel path cracking considerations could be revised to provide more consistent results across pavement types (e.g. composite, concrete) and pavement widths (e.g. <12 ft.) 4. Evaluate structural capacity indicators for potential consideration as a Federal measure.

Proposed research activities include:
1. Conduct outreach interviews to State DOTs and evaluate DOT publications (e.g TAMPs) to:
a. Capture current uses for federal and state-specific pavement condition metrics and their relative strengths and weakness with respect to identified network-level uses
b. Quantify the extent of the State DOTs’ differences with current federal pavement metrics
c. Capture alternative procedures states are using to determine and communicate pavement condition and/or failure as well as network-level decision-making
d. Source State DOT condition data sets, including corresponding state and federal ratings and network-level pavement maintenance recommendations

2. Conduct a comparative analysis between state and federal measures and determine the ability to utilize federal measures to replicate network-level decisions.

3. Evaluate alternative methods of federal measure with best practices of state measures to develop a list of alternative methods that could be used for pavement management measures and meet both State and Federal needs.

4. Provide summary and comparison of current vs. alternative methods with respect to evaluation criteria at national and individual state levels

5. Provide guidance on how to enhance the utility of current federal measures and/or condition thresholds and recommend revisions in a format useful to adoption into the HPMS Field Manual

Desired products include:
• Evaluation of federal measure with respect to consistency, usefulness, and alignment
• Guidance on how to increase the utility of current metrics and/or thresholds
• Recommendations for revised pavement condition metrics and/or thresholds
• Recommendations for updated HPMS Field Manual

This topic is of significant interest to AASHTO, TRB, and the DOTs, having ranked third amongst potential NCHRP topics in the recent TAM Research Prioritization conducted as part of the 2020 Mega Meeting of the AASHTO Subcommittee on Asset Management, in cooperation with the TRB Asset Management Committee (AJE30).
The following are organizations and contacts who may be interested in using the results of the research and supporting its dissemination:
• AASHTO Committee on Performance-based Management: Tim Henkel, Chair (Minnesota DOT, (651) 366-4829, [email protected]), Matt Hardy (AASHTO, (202) 624-3625, [email protected])
• AASHTO Subcommittee on Asset Management: Matt Haubrich, Chair (Iowa DOT, (515) 233-7902, [email protected])
• FHWA Office of Asset Management: Steve Gaj (FHWA, (202) 366-1336, [email protected]) Tim Henkel, TAM Expert Task Group Chair (see contact above)
• TRB Asset Management Committee (ABC40): Tim Henkel, Chair (see contact above)

500000 12-18 months Full NCHRP

Programmed Projects

Objectives


Project
Funding: $400,000
Funding Source: Full NCHRP
Objectives


Objectives


Project
Funding: $500,000
Funding Source: Full NCHRP
Objectives


Objectives



Active Projects

Project
Funding: $375,000
Funding Source: Full NCHRP
Objectives

The object of this research is to develop an easy-to-use guide for evaluating the effectiveness of transportation visualizations that state DOTs can use to improve communication and decision-making. With this guide, state DOTs will have the tools to hone their message, manage the data overload that occurs in visualizations and impact travel behavior with effective visual data increasing safety, security and mobility.
The suggested tasks for this research are:
1) Research the essential components of what makes a visualization effective. Build off NCHRP 226 and 20-24(93)B(02). Evaluate the visualization techniques and practices documented in NCHRP Synthesis 52-16.
2) Create a guidebook that clearly communicates how to approach a new visualization and guide its creation.
3) Evaluate how to gain feedback on the effectiveness of a visualization in communicating information and influencing behavior, and also facilitates decision making. This could build off practices currently used for public service announcements (PSA).
4) Identify or develop noteworthy practices for evaluating the effectiveness of a visualization.
5) Create a Guidebook that provides state DOTs with options for evaluating the effectiveness of a visualization.
6) Integrate the two elements – creation and evaluation – into a guide that demonstrates the feedback loop of continuous improvement enabled by joining these two functions.
7) Establish an online case study website that showcases exceptional and innovative visualizations. This could include a category for the use of emerging data and emerging analytic capacity so state DOTs could maintain currency in innovative practices. The website would be updated by the TRB AED80 Visualization in Transportation Committee yearly by acknowledging award winning entries.


Project
Funding: $550,000
Funding Source: Full NCHRP
Objectives

The objective of this research is to prepare an authoritative analysis and assessment of the national performance management data and, based upon the analysis and assessment, to provide recommendations on future capacity building activities and possible new performance measures. There are three sub-objectives focused on:

  1. Analysis of the national performance management data for the three performance measurement areas (safety, assets, and system performance) will be conducted to better understand trends, target setting approaches, and target achievement by state DOTs; and
  2. Assessment of the performance management data that provides a comprehensive and compelling story on the results of the performance management provisions.
  3. Identification of future capacity building needs and performance measures.


Project
Funding: $500,000
Funding Source: Full NCHRP
Objectives

The objective of this research is to produce guidance on how DOTs can improve the use of DEI and other related indicators in TAM investment decision making processes.

Tasks will include:
• Compile DEI and other related indicators for use in TAM decision-making
• Develop a framework for applying DEI and other related indicators in TAM decision-making processes, including:
o analysis activities to forecast impact
o scenario planning including identifying alternate investment options with an equity lens
o investment tradeoff decision-making
o community engagement activities including increasing the involvement of underserved communities.
• Develop additional quantitative and qualitative performance measures for asset management and planning that consider DEI and other factors in transportation investment decisions
• Produce a summary of challenges, inherent inequities, and obstacles in asset management and planning activities in order to help transportation add value to underserved communities
• Develop guidance for transportation agencies to use the DEI and other related indicators to balance competing strategic objectives related to asset performance, safety, mobility, and DEI.


Project
Funding: $3,500,000
Funding Source: FHWA/ NCHRP
Objectives

Transportation owners and operators are responsible for the transportation system and the delivery of a range of services and functions through the management of that system. There are inherent risks involved with the management of these systems, notwithstanding aging infrastructure, and fiscally constrained resources. Many agencies are moving toward performance-based resource allocation while simultaneously recognizing risks that may undermine their strategic goals. As these risks affect every component of a highway system to a greater or lesser extent, accurately accounting for and addressing these risks within a highway agency’s enterprise-wide management program is the goal which currently lacks analysis tools.
Investing in risk and resilience strategies and enhanced recovery to reduce or eliminate the impact of external events is also paramount to ensure a thriving, viable transportation system. Risk management requires the identification and assessment of potential threats and hazards, asset vulnerabilities from applicable threats, an evaluation of potential mitigation actions to reduce risk, a clear and easy to implement process to prioritize mitigation activities, and investment that aligns with agency strategic and performance goals. Asset management and more recently performance management, has been an ongoing focus of many research efforts. However, guidance for analytical risk assessment methods to support risk-based asset management processes is lagging. Risk assessment processes, methods, and tools are needed to integrate risk management into asset and performance management systems. In addition, an understanding of the relationship between risks and system resilience is lacking.
Basics needed:
• Adopted definitions
• Standard framework for quantitative risk based on expected financial losses to agency and traveling public
• Establishment of performance metrics for risk and resilience
• Suggested risk tolerance and resilience performance targets that agencies can customize
• Methods to incorporate climate projections into decision making
• Methods to analyze both deterministic and probabilistic input data (500-yr flood versus climate scenarios)
Future research can expand threats analyzed; assets analyzed; climate projections; life cycle cost; remaining life consideration of assets; environmental impacts, etc.


Project
Funding: $450,000
Funding Source: Full NCHRP
Start date: June 2019
End date: July 2022
Objectives

The objectives of this research are to (1) estimate the current and future effect of dynamic CAV technologies on roadway and TSMO asset maintenance programs; (2) develop guidance on existing and proposed measureable standards associated with roadway and TSMO asset maintenance for preventive, reactive, and emerging maintenance needs; and (3) identify the associated resource and workforce development needs.


Project
Funding: $300,000
Funding Source: Other CRP
Start date: August 2021
End date: February 2023
Objectives

The objective of this research is to develop a “playbook” with standards, specifications, and process flows to help airport operators with the accurate and timely delivery of new and replacement asset information/meta data to key airport stakeholders responsible for tracking and maintaining airport assets.


Project
Funding: $450,000
Funding Source: Full NCHRP
Start date: April 2022
End date: January 2024
Objectives

With the original project being completed in early 2020, the project panel has focused on both implementation of TAM Guide III and determining additional needs to make the TAM Guide III better based on the original literature research and review. An extensive literature search was conducted as a part of the original NCHRP project phase one work and the results generally incorporated and addressed in the new TAM Guide III; however, because of funding limitations, not all of the desired changes, updates, and enhancements could be addressed. Based on those limitations, the objective of this research is to provide further enhancements and content to the TAM Guide III.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: June 2022
End date: June 2024
Objectives

Based on these changing conditions, the objective of this research is to investigate the needs and benefits from incorporating TSMO assets in TAMPs. The study will develop a guide for state DOTs to facilitate the inclusion of TSMO in TAMP without disrupting the established and on-going planning process.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: July 2022
End date: July 2024
Objectives

The objectives of this research are to develop guidance promoting the use of performance-based management strategies in maintenance and to present the resulting information in a format that is easily accessible to the maintenance community.



Recent

Project
Funding: $350,000
Funding Source: Full NCHRP
Start date: September 2020
End date: February 2022
Objectives

The objective of this research is to develop a guide for state DOTs and other transportation agencies on incorporating maintenance costs in a risk-based TAMP, including but not limited to the following:

1. A detailed presentation of procedures for identifying, collecting, and managing required data;

2. Using life-cycle planning tools and techniques to demonstrate financial requirements and cost-effectiveness of maintenance activities and preservation programs and the potential change in costs and liabilities associated with deferring these actions;

3. Formulating strategies that identify how to invest available funds over the next 10 years (as required by the TAMP) using life-cycle and benefit-cost analyses (and other applicable tools and techniques) to measure tradeoffs between capital and maintenance activities in alternative investment scenarios; and

4. Designing components of a financial plan showing anticipated revenues and planned investments in capital and maintenance costs for the next 10 years.


Background

The Moving Ahead for Progress in the 21st Century Act (MAP-21) established a performance-based Federal-Aid Highway Program that includes a requirement for state departments of transportation (DOTs) and metropolitan planning organizations (MPOs), and other transportation planning agencies to develop and regularly update a risk-based Transportation Asset Management Plan (TAMP). The TAMP is designed to identify investment and management strategies to improve or preserve asset conditions as well as the performance of the National Highway System (NHS). Although only pavements and bridges on the NHS are required to be included in the TAMP, states are encouraged to include additional assets. At a minimum, the TAMP should include the following:

A summary of NHS pavement and bridge assets, including a description of conditions;
Asset management objectives and performance measures;
Identification of any performance gaps;
A life-cycle cost and risk management analysis; and
A 10-year financial plan and corresponding investment strategies.
While most states are able to capture past and planned expenditures on capital projects, states are finding it challenging to incorporate maintenance costs into their TAMP.

The absence of maintenance cost data in a TAMP must be addressed to capture the full amount of investments being made by states in the transportation system. This issue is especially important as state transportation agencies increase their attention to system preservation, placing greater emphasis on preventive maintenance.


Project
Funding: $250,000
Funding Source: Full NCHRP
Start date: October 2020
End date: April 2022
Objectives

The objective of this research is to provide a scoping study for a transportation framework for all-hazards risk and resilience analysis of transportation assets. The scoping study must accomplish the following objectives:

1. Develop a comprehensive and consistent set of risk- and resilience-related terminology for transportation agency use; and
2. Provide a research roadmap for developing a framework for a quantitative all-hazards risk and resilience analysis of transportation assets, with its associated tools, and guidance on its application.

Accomplishment of the project objective(s) will require at least the following four tasks.


Background

Risk-informed asset management and an understanding of system resilience are two relatively new concepts within the transportation industry. Transportation agencies often use all-hazards risk and resilience analyses to make decisions about enhancing system resilience. The Federal Emergency Management Administration defines "all-hazards" as “Natural, technological, or human-caused incidents that warrant action to protect life, property, environment, and public health or safety…” (https://training.fema.gov/programs/emischool/el361toolkit/glossary.htm). To conduct all-hazards risk and resiliency analyses for transportation assets, a transportation agency must:
• Know assets’ locations and their criticality for service delivery;
• Understand potential natural and man-made threats and associated likelihoods affecting assets;
• Be able to quantify the potential consequences from applicable threats to assets while adequately addressing the considerable uncertainty in those consequences; and
• Understand the link between risk and resilience.

In 2006, the American Society of Mechanical Engineers published Risk Analysis and Management for Critical Infrastructure Protection (RAMCAP), an all-hazards approach to critical infrastructure risk assessment. The initial document focused on terrorist activities but has since expanded into analysis of natural hazards such as extreme weather, seismic events, and changing environmental conditions, given the increased activity from such threats in recent years. RAMCAP identifies transportation as a critical sector, along with industries such as banking, oil/gas, electricity, water/wastewater, and nuclear energy. To date, several industries, including the water/wastewater sector, have developed an industry-specific standard for risk assessment. By demonstrating an active approach to risk assessment and management developed and approved by professionals within the water/wastewater sector, those agencies have seen improvements in bond ratings and reductions in insurance premiums. While RAMCAP provides a generic approach to critical infrastructure risk assessment, it does not provide specific information on asset performance under applicable threats for any one critical sector.

Through pilot studies, state departments of transportation (DOTs) have applied RAMCAP and similar guidance to risk and resilience analysis in their states. FHWA’s Vulnerability Assessment and Adaptation Framework (FHWA-HEP-18-020), for example, is guidance based on significant pilot studies in a large number of states. Four key lessons from the state DOT pilot studies include:

1. Though some research studies have been published on transportation asset performance under physical threats, this information is scattered across many published articles dating back to the 1960s and has not been compiled in a user-friendly format.
2. State agencies see the need for a common language for risk and resilience practitioners to facilitate adoption and implementation of consistent and effective risk management and resilience practices.
3. A simple industry framework is needed to support compilation of information for risk-based analysis of transportation assets, to reduce the burden on state DOTs and metropolitan planning organizations by clarifying the bases for quantifying annual risk and ensuring system resilience:
• Threat probabilities by type of hazard and by geographic location;
• Asset vulnerability to each applicable threat, appropriately considering asset resilience; and
• Quantitative anticipated consequences from each applicable threat to each asset, appropriately considering the significant uncertainties in those consequences.
4. Agencies prefer not to be constrained by proprietary solutions for all-hazards risk and resilience analyses but have the flexibility to implement open-source, repeatable methodologies. Inputs for these analyses should be derived from data readily available to agencies or other users.

The AASHTO Committee on Transportation System Security and Resilience and the Subcommittees on Risk Management and Asset Management have, collectively, identified the need for a transportation-specific framework that responsible agencies can use in conducting their own all-hazards risk and resilience analyses to facilitate enterprise-wide transportation decision-making. Research is needed to develop this framework and provide guidance on its use.


Project
Funding: $349,618
Funding Source: Full NCHRP
Start date: December 2020
End date: December 2022
Objectives

The objective of this research is to develop resources for state DOTs and other transportation organizations to help them explain the value of investing in resilience throughout the life cycle of planning, engineering, design, operations, construction, and maintenance activities.

The resources should provide tools for state DOTs to (1) build the business case for investing in resilience strategies and (2) develop communication strategies to make the public and stakeholders aware of the importance of resilience as part of the state DOT's overall mission. This project should consider the diversity of resiliency issues among state DOTs and agencies.

Accomplishment of the project objective will require at least the following tasks.


Background

Significant research has been conducted on many different aspects of system resilience and security, but research is lacking on the topics of (1) how state transportation officials can make a business case for investing in resilience strategies and (2) resilience-oriented communications strategies. Communications strategies are central to successful balloting of state and local funding initiatives. This project is focused on both the "hard" technical business cases and the arguably "harder" communications strategies applicable to the general public as well as governors, legislators, staff and leadership at state departments of transportation (DOTs), and regional transportation planning organizations.

The 2015 Fixing America’s Surface Transportation (FAST) Act (Pub. L. No. 114-94) included several requirements for transportation agencies that reflected an increasing concern for system and operational resilience and security. For example, statewide and metropolitan transportation planning processes were to consider projects/strategies to improve the resilience and reliability of the transportation system. It continued all prior National Highway Performance Program (NHPP) eligibilities and added (among four new eligible categories) one for projects to reduce the risk of failure of critical NHS infrastructure (defined to mean a facility, the incapacity or failure of which would have a debilitating impact in certain specified areas). The FAST Act keeps in place a resilience provision introduced in the 2012 Moving Ahead for Progress in the 21st Century Act (MAP-21), which required state DOTs to develop risk-based asset management plans.

State DOTs are addressing resilience issues in concert with local and regional organizations, including governments, planning organizations, non-profits, and the business community. In order to identify effective business case and communications strategies for state DOT resilience efforts, it is key to acknowledge the different demographics, infrastructure, and resource capabilities of each state DOT and agency, as well as the differing resilience opportunities and challenges they face. In addition, some state DOTs and local and regional transportation agencies have begun and achieved robust resilience activities. It is apparent that system resilience is becoming an ever more important concern for transportation officials at all levels of government.


Project
Funding: $45,000
Funding Source: Full NCHRP
Start date: November 2020
End date: August 2021
Objectives

The objective of this synthesis is to document the various technologies used by DOTs to inspect highway infrastructure during construction and maintenance of assets.

Information to be gathered includes (but is not limited to):
• The technologies used for inspection of new and existing highway infrastructure assets (e.g., geospatial technologies, mobile software applications, nondestructive evaluation, remote sensing and monitoring);
• The different methods used to assess the viability, efficiencies, and return on investment (ROI) of inspection technologies;
• How information from these assessments is being used (e.g., for construction project management, to allocate resources, to determine condition of the asset).


Background

Highway infrastructure inspection is critical in any transportation system because it ensures conformance with plans, specifications, and material requirements over the lifecycle of the asset. Historically, state departments of transportation (DOTs) have employed on-site workforces to execute infrastructure inspection using traditional inspection methods. With the latest technological advancements, the inspection landscape has been rapidly changing through incorporation of technologies such as Unmanned Aircraft Systems (UAS), embedded and remote sensors, intelligent machines, mobile devices, and new software applications. These technologies can potentially satisfy the need for cost-effective and efficient inspection and monitoring of highway infrastructure (e.g. roadways, bridges, drainage systems, signage).


Project
Funding: $45,000
Funding Source: Synthesis
Start date: October 2020
End date: July 2021
Objectives

The objective of this synthesis is to document current state DOT practice and experience regarding collecting and ensuring the accuracy of element level data. The synthesis will also examine how DOTs are using the data from inspection reports.

Information to be gathered includes (but is not limited to):
• Practices for collecting element level data (e.g., collection software, nondestructive evaluation methods);
• Practices and methods for ensuring the accuracy of the data collected;
• DOT business processes that use element level data (e.g., project scoping, maintenance, bridge asset management modeling and analyses, performance measurement and reporting); and
• Aspects of DOT bridge management systems that use element level data (e.g., deterioration models, action types, action costs, decision rules, performance indices).


Background

State departments of transportation (DOTs) have been transitioning to using element inspection data for documenting bridge conditions since 2014. This condition assessment methodology offers a significant opportunity to improve the timing, cost efficiency, and accuracy of bridge maintenance, rehabilitations, and replacement decisions. However, there is no standard guidance on achieving those benefits. Bridge management platforms such as AASHTOWare BrM can combine these data with other inputs to forecast future conditions and recommend optimal plans for a portfolio of bridges.

Anecdotal evidence suggests that state DOTs that receive the inspection reports are taking numerous approaches to using the data. Many DOTs rely on general condition ratings reported to the National Bridge Inventory for bridge maintenance and investment decisions. Still others have begun to incorporate the element level data into those decisions.


Project
Funding: $324,998
Funding Source: Full NCHRP
Start date: May 2020
End date: May 2022
Objectives

The objective of this research is to develop a guide for the formulation of long-range plans and budgets for replacement of highway operations equipment. The guide shall include processes and tools for consideration in making investment decisions. For the purpose of this research, long-range is defined as 20-25 years.


Background

State highway agency equipment fleet assets are vital to the delivery of agency programs, projects, and services. These fleets represent a significant capital investment and require recurring maintenance, operational expenditures, and timely replacement to achieve the desired level of performance, reliability, and economy. A variety of practices have been used by state departments of transportation (state DOTs) agencies for making investment decisions for highway operation equipment. However, there is no widely accepted process for determining the long-range needs and budgets.

There is a need to identify current practices, review relevant information, and develop rational processes that will provide state DOTs a realistic means for making investment decisions. A guide for formulating the long-range plans for replacement needs and budgets of highway operations equipment can then be prepared to facilitate use of these processes. Such a guide will help highway equipment managers and administrators in making decisions regarding replacement needs and budgets. NCHRP Research Report 879: Optimal Replacement Cycles of Highway Operations Equipment (http://www.trb.org/Publications/Blurbs/177263.aspx) contains guidance on the processes and tools that should be considered in making decisions regarding the optimal replacement cycles of on- and off-road highway operations equipment used by state DOTs; these can be useful for this research.

Recent work completed under NCHRP Project 13-06, “Guide for the Formulation of Long-Range Plans for Replacement Needs and Budget of Highway Operations Equipment” (http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP13-06_RevisedInterimReport.pdf), provided a review of some of the issues related to the formulation of long-range plans and budgets for replacement of highway operations equipment and proposed a preliminary research plan for developing related guidance (see Special Note B). However, additional research is needed to further define and address the issues associated with the formulation of long-range plans and budgets for replacement of highway operations equipment and develop the needed guidance.


Project
Funding: $370,000
Funding Source: Full NCHRP
Start date: August 2020
End date: February 2023
Objectives

The objectives of this research are to (1) develop guidelines for the applications of RFID and wireless technologies for highway construction and infrastructure asset management and (2) plan and conduct a workshop to introduce the proposed guidelines to an audience of DOT staff and other stakeholders. At the minimum, the research shall include readiness assessment of RFID and wireless technologies for different applications and implementation requirements.


Background

Advancement in sensing and transmitting technologies such as radio-frequency identification (RFID), barcodes, e-ticketing, global positioning systems, and other associated technologies has significantly improved wireless transmission. Projects where such devices were used reported beneficial outcomes through improved resource and quality management. The wireless transmission technology enables sensing, counting, measuring, documenting, identifying, locating, tracking, and transmitting information in real time. These features can significantly improve construction project and infrastructure asset management. However, the beneficial outcomes have not attracted the highway construction industry to adopt it to its fullest potential

There are significant gaps between the capability of existing wireless transmission technologies and their implementation. Therefore, there is a need to provide guidelines for state departments of transportation (DOTs) to select the appropriate technology for a specific application for highway construction and infrastructure asset management


Project
Funding: $666,617
Funding Source: Full NCHRP
Start date: June 2018
End date: January 2021
Objectives

The objective of this research is to provide transportation agencies with practical guidance, recommendations, and successful implementation practices for

1. Integrating performance, risk, and asset management at transportation agencies;

2. Identifying, evaluating, and selecting appropriate management frameworks; and

3. Recruiting, training, and retaining human capital to support asset management and related functions.


Background

The AASHTO Subcommittee on Asset Management is seeking to implement the recently completed Transportation Asset Management Research Roadmap (TAM Research Roadmap), developed under the NCHRP 08-36 quick response research program. The TAM Research Roadmap was developed in cooperation with AASHTO, TRB, USDOT, and other industry partners. It includes a multi-year research agenda to improve the overall implementation of transportation asset management at state, regional, and local transportation agencies. The purpose of the TAM Research Roadmap is to enable the TAM community to identify, propose, and implement TAM research projects necessary to improve the understanding of TAM and allow projects to be funded through various research programs including NCHRP, USDOT funding sources, and other sources.

The practice of performance, risk, and asset management has evolved over many years. MAP-21 and the recently passed FAST Act, associated rules, and guidance have clarified the federal asset management requirements. Beyond federal requirements, broader research and practice in the areas of transportation performance, risk, and asset management initiated by state DOTs and other public and private entities have added to the availability of tools, methods, and strategies. Yet, practitioners continue to struggle with integration and implementation of research findings and regulatory requirements. This state of the practice, coupled with a detailed gap analysis, was the focus of the TAM Research Roadmap. To address identified gaps, additional research is needed to implement effective transportation management practices and identify human capital needs at state DOTs, regional organizations, and local agencies. The research proposed in this study was identified within the Research Roadmap and is designed to fill gaps in several high-priority areas.


Project
Funding: $400,000
Funding Source: Full NCHRP
Start date: August 2018
End date: January 2021
Objectives

The objective of this research is to develop a guidebook presenting principles, organizational strategies, governance mechanisms, and practical examples for improving management of the processes for collecting data, developing useful information, and providing that information for decision making about management of the transportation system assets. The guidebook should assist practitioners addressing at least the following topics:

• Conducting agency self-assessments of information management practices (for example, a maturity model and leading-practices descriptions), using existing tools and techniques to the extent these are available;
• Exploring transferrable data and information management practices from a variety of sources—DOTs and others not necessarily restricted to domestic transportation agencies—that have demonstrated effective asset management;
• Considering how to incorporate evolving technologies and state-of-the-art management practices, for example by providing agencies with management scenarios and exemplary data models;
• Establishing organizational structure, personnel capabilities requirements, outsourcing policies and practices, and governance policies and procedures to support effective provision of asset management information;
• Assessing options for staff development, outsourcing, and other strategies for ensuring the agency has appropriate capability and capacity for asset information management; and
• Developing a management roadmap for implementing unified, enterprise-wide governance of asset data and information, from initial project development through transportation asset and performance management.


Background

State departments of transportation (DOTs) and other transportation agencies produce, exchange, manage, and use substantial quantities of data and information for project development and subsequent management of the system assets for which they are responsible. These agencies devote considerable resources to data collection and storage and often face challenges such as duplicating effort or gaps in data collected by various organizational units; ensuring that data sources are well documented and information is current; and providing the people responsible for planning, design, construction, and operations and maintenance of system assets with access to reliable current information for decision making.

Continuing rapid evolution of data and information technologies presents challenges as agencies seek to ensure that the transportation system delivers high performance and the agency functions effectively and efficiently. Remote sensing, Lidar, GIS, 3-D graphic displays, and virtual reality (to name a few of the newer developments) are supplementing or replacing data acquisition and information management practices once based on physical measurements and storage and display in large-format print media. Many agencies must deal with legacy data while avoiding obsolescence in their management practices. Typically fragmented DOT business practices and the decades-long processes of asset development and life-cycle service have produced disparate data sets that are poorly suited to effective long-term system asset and performance management.

Efforts are being made to address these problems. The American Association of State Highway and Transportation Officials (AASHTO) for example has developed a set of Core Data Principles (https://data.transportation.org/aashto-core-data-principles/) for transportation data. Ongoing research sponsored by the Federal Highway Administration (FHWA) will provide an analysis of the civil integrated management (CIM) data practices. Guidance produced by NCHRP, AASHTO, and FHWA addresses transportation asset management, information management, and data self-assessment (data value and data management)—see Special Note B. However, additional research is needed to provide agencies with guidance on opportunities for improving their information acquisition and management; data governance and maintenance workflows; human and business-support resources needed for data and information management; and procedures for assuring that reliable information for effective asset management is available when and where it is needed.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: April 2019
End date: November 2021
Objectives

The objective of this research is to develop guidance coupled with one or more prototypical, analytical model(s) to support life-cycle planning and decision-making that applies life-cycle cost analysis as a component of a system-wide transportation asset management program. This guidance and associated analytical model(s) will apply quantitative asset-level, project-level, and network-level inputs to demonstrate methods for calculating life-cycle costs associated with alternative scenarios while taking into account preservation, rehabilitation, replacement, maintenance, and potential risk mitigation actions on a range of highway assets. To the degree possible, costs should reflect condition, risk and uncertainty, mobility, safety, and any other quantifiable aspect of transportation system performance. Although this research is targeted to state DOT highway assets within the overall transportation network, the research should also identify additional research necessary to expand the process to include other modes.


Background

State and federal policies are increasingly requiring state departments of transportation (DOTs) and other transportation agencies to implement a transportation asset management (TAM) approach to manage their existing assets. Defined as a strategic and systematic process of operating, maintaining, upgrading, replacing, and expanding physical assets effectively throughout their life cycle, TAM requires an agency to focus on strategic business and engineering practices to allocate resources cost effectively so that assets are maintained in the best condition possible, for the longest duration, at the least practicable cost.

State DOTs and other agencies need better economic analysis tools for assessing cost effectiveness of various maintenance treatments, thus enabling them to manage transportation assets more efficiently at the network level. One such industry-accepted practice and tool used by transportation agencies is project level life-cycle cost analysis (LCCA). LCCA is an engineering-economic analysis technique that allows comparison of the relative merits of competing project implementation alternatives. By considering all of the costs—agency and user—incurred during the service life of an asset, this analytical practice guides decision-makers in selecting of projects and other action alternatives that are the most cost effective over their service life.

A limitation of the traditional LCCA practice is its focus on individual project-level analysis which is not always compatible with network-level analysis requiring a broader focus on long-term maintenance and operation of a set of existing assets. Life cycle planning (LCP), however, is a relatively new concept aimed at providing tools and techniques that state DOTs and other transportation agencies can use to conduct an economic cost analysis for a network of transportation assets to manage them cost-effectively over their project life, covering the time each asset goes into service after construction to the time it is disposed of or retired. LCP can take advantage of asset management system capabilities, which include network-level condition data, by applying an engineering-economic analysis approach to evaluate and compare the cost-effectiveness of maintenance strategies to preserve assets at a desired performance level.

While LCP is in its infancy compared with LCCA, the American Association of State Highway and Transportation Officials (AASHTO), the Federal Highway Administration (FHWA), state governments, and international agencies have all developed analytical methods that can be used to create more robust LCP methods and tools. For example, NCHRP Report 713: Estimating Life Expectancies of Highway Assets, documents various methods for assessing the deterioration and life expectancy of a variety of highway assets, including signs, traffic signals, street lighting, sidewalks, culverts, pavements, and bridges. These methods, which can be used to assign an economic value to agency actions taken to maintain existing assets as well as quantifying, in economic terms, user and non-user stakeholder concerns, are foundational to developing more robust LCP analysis tools and techniques.

LCP could become an integral part of a system for managing assets at the network level to evaluate the economic aspects of various actions more effectively and to build strategies a transportation agency can take to increase project longevity. This research is needed to develop guidance and analytical models to enable state DOTs and other transportation agencies to implement a life cycle planning process applicable to TAM.


Project
Funding: $600,000
Funding Source: Full NCHRP
Start date: May 2019
End date: June 2021
Objectives

The objectives of this research project are to
• Develop enhanced techniques to consider and evaluate asset management-related risks as part of investment decision-making practices, including qualitative, quantitative, and analytical methods—building on and aligning with previous and continuing research efforts in the areas of TAM and risk management;
• Review effective processes to determine how existing and potential approaches can be used when integrating enterprise, network, and program level risk analysis. Alternative approaches should address how state departments of transportation (DOTs) make multi-objective, cross-asset investment decisions under uncertainty to best support national, state, and local asset performance goals for pavements, bridges, and other assets;
• Develop strategies and procedures for risk mitigation and response with applicable tools and tracking mechanisms for transportation agencies to improve risk assessment in existing and evolving asset management business processes; and
• Develop implementation guidance, including practical tools and techniques for incorporating risk and uncertainty, as well as possible measures of asset resilience that can be integrated into risk assessment procedures in support of national, state, and local asset performance goals.


Background

As transportation agencies are faced with aging and deteriorating infrastructure in a context of limited resources, it becomes imperative that assets are managed efficiently and effectively. To this end, Federal Regulations Title 23 CFR Part 515 require state transportation agencies to develop Risk-Based Transportation Asset Management Plans (TAMP), including a risk management plan. The risk management plan must include identification, assessment, evaluation, and prioritization of risks, as well as a mitigation plan for addressing and monitoring top priority risks. State transportation agencies are seeking to improve the assessment of risks to transportation assets as part of optimized investment decision-making.

Transportation agencies must contend with a wide variety of risks as they manage transportation assets. Owners must respond to impacts of events both within and outside their control. These risks can include funding uncertainty, regulatory changes, leadership and policy changes, increasing costs, severe weather events, evolving technology, and others. Underestimating risk can lead to costly repairs and reconstruction, while overestimating risk can lead to wasted resources. Asset owners require better techniques for assessing and managing risk.

Approaches to managing risk range from qualitative assessments of likelihood and consequence at the enterprise level to quantitative, probabilistic approaches at the network and program levels such as scenario analysis, simulation, and other approaches to predictive modeling. Successful organizations, across both the public and private sectors, effectively and efficiently quantify the effects of risk and uncertainty related to threats and opportunities.


Project
Funding: $45,000
Funding Source: Synthesis
Start date: September 2019
End date: December 2020
Objectives

The objective of this synthesis is to document DOT collaboration with MPOs relative to target setting, investment decisions, and performance monitoring of pavement and bridge assets for performance-based planning and programming. The synthesis will focus on DOT practices to initiate and facilitate collaboration with MPOs.


Background

The FAST Act emphasizes preservation of the existing transportation system in the metropolitan long-range transportation factors. These factors directly link the practice of long-range transportation planning to the practice of transportation asset management. Transportation asset management (AM), one of the national performance areas identified in MAP-21, is a strategic approach and business model that prioritizes investments primarily based on the condition of assets. The asset management cycle involves asset management plan development, maintenance and engineering activities, asset management plan monitoring, asset prioritization, and investment trade-off activities. A key component of asset management plan development is the inclusion of a performance management framework intended to provide a systematic approach to measuring progress in the implementation of an asset management strategy while enabling auditing and monitoring. Performance measurement and transportation asset management are therefore inextricably linked.

MAP-21 resulted in increased attention being paid to performance-based transportation planning across local, regional and statewide planning scales. The result has been increased communication and coordination across the national performance goal areas. Yet the practice of asset management within state DOTs can happen separate and apart from the performance-based transportation planning activities that occur within MPOs. However, to achieve the strategic vision of transportation asset management for system preservation, measurement, monitoring and prioritization, the integration of DOT and MPO activities, and coordination in the development of AM performance measures, may be necessary.


Project
Funding: $500,000
Funding Source: Full NCHRP
Start date: June 2020
End date: September 2022
Objectives

The objective of this research is to develop and disseminate a practitioner-ready guidebook for state DOTs that is focused on methods for the target-setting component of transportation performance management. The guidebook will provide information on selecting effective methods that use both qualitative and quantitative sources to establish performance targets. The guidebook will also address how to re-evaluate targets, taking into account unforeseen changes impacting the transportation system, performance data, and performance reporting requirements.


Background

In 2012, the Moving Ahead for Progress in the 21st Century Act (MAP-21) established national performance management requirements for state departments of transportation (DOTs). Successive legislation, regulation, and guidance have reinforced these requirements in the Transportation Performance Management (TPM) framework, with its seven national performance goals and related performance measures within three measure areas: safety (PM1); pavement and bridge condition (PM2); and travel time reliability, congestion, and emissions (PM3). State DOTs are required to establish performance targets for each performance measure and to regularly report on progress towards meeting those targets. In addition, some states have developed additional, non-TPM measures and targets to manage their safety, asset management, system performance, and other program areas.

Performance targets can be established using quantitative or qualitative methods, or some combination of both methods. For example, a quantitative method could use historical data to project a trend line. A qualitative method may establish a target based on factors such as agency leadership priorities. An example of a combined approach is adjusting trend data for fatalities and serious injuries with stakeholder perspectives to establish a Vision Zero safety target. Combined approaches can also be risk-based; a state DOT may adjust projections to account for funding scenarios or uncertainty in the capacity of the state DOT and/or partner agencies to deliver the planned program. Additionally, some targets may be defined by state statute. Any of these methods can result in a target that reflects a desired outcome and allows for ongoing evaluation of progress towards attaining the target using performance-based decision making and performance reporting.

However, establishing targets presents a number of challenges. Reliance on historical trend data can result in a target that cannot account for unforeseen events, such as severe weather that significantly increases winter maintenance costs or macroeconomic factors that affect transportation funding. These events require a state DOT to adjust their program, reallocating resources in ways that can affect progress towards a target. Some challenges are more technical in nature. For example, state DOT understanding and interpretation of federal guidance on calculation procedures has periodically changed, such as how to round calculated values or how to handle overlapping Traffic Management Channel (TMC) segments or segments that are only partly on the National Highway System (NHS). These changes in calculation methods can shift trends or targets that were established using prior calculation methods.

In 2010, NCHRP Report 666: Target-Setting Methods and Data Management to Support Performance-Based Resource Allocation by Transportation Agencies (available at http://www.trb.org/Publications/Blurbs/164178.aspx) describes steps for state DOTs to establish performance targets and documented quantitative and qualitative approaches used by state DOTs to establish targets. Since that publication, state DOTs, the Federal Highway Administration (FHWA), Metropolitan Planning Organizations (MPOs), and local governments have gained experience in target setting in connection with the first round of TPM requirements. As part of the ongoing evolution of transportation performance management, state DOTs are required to re-evaluate performance targets and provide a Mid Performance Period Progress Report to FHWA in October 2020 that documents performance towards targets and any revisions to targets.

Research is needed to improve the practice of target setting by developing more effective yet practical methods for state DOTs to establish and/or re-evaluate performance targets, strengthening state DOT capacity to use performance management to make better decisions in transportation planning and programming.


Project
Funding: $600,000
Funding Source: Full NCHRP
Start date: July 2020
End date: November 2021
Objectives

The objective of this research is to develop a guidebook that state transportation agencies and others can use for calculation and communication of the value of transportation assets, and for selecting valuation methods to be used in transportation asset management. This guidebook, applicable to transit as well as highway modes, should (1) present a standardized terminology for discussing asset value, (2) describe currently accepted valuation methods, (3) describe the merits and shortcomings of these methods to produce measures of asset value useful for communicating among stakeholders and making resource allocation decisions, and (4) present advice on determining which valuation methods will be most useful in communication and decision-making for a particular agency.

The guidebook shall include at least the following components:
• Terminology and definitions of asset value (a) determined by generally accepted accounting principles, considering initial acquisition or construction costs and depreciation, (b) based on engineering estimates to replace the asset (considering age, condition, obsolescence, and the like), (c) based on estimates of revenues that could be produced from the assets if they were operated as a business venture, (d) based on socio-economic returns to a region’s economy and wellbeing, or (e) other relevant definitions;
• Current best practices for computation and presentation of each of the definitions of value listed above, presented in a manner that can be used by transportation agencies;
• Analysis of the advantages and shortcomings of the value methods as factors to be considered in system-level resource allocation decisions, for example, investment planning, maintenance budgeting, lifecycle management, and presentations for public discussion;
• Identification and description of needs for data and information for value computations;
• A capability-maturity model that an agency can use to characterize its valuation practices and needs and strategies for improvement;
• Advice on incorporating valuation estimates into the agency’s asset management practices.
NCHRP anticipates that the guidebook may be published by AASHTO. It should be compatible with print and web-based versions of AASHTO’s Transportation Asset Management Guide.


Background

State transportation agencies are stewards for public infrastructure assets that are essential to economic vitality, public safety, and quality of life. Accurate, relevant, and reliable asset valuation is crucial for decision-making to ensure the effective, efficient, and economical management of these public assets.

Congress required, through the Moving Ahead for Progress in the 21st Century Act (MAP 21), enacted in 2012, that each state transportation agency develop and implement a risk-based transportation asset management plan (TAMP) that includes a valuation of pavements and bridges on the National Highway System (NHS). State transportation agencies are complying with the requirements through various approaches, but have struggled to incorporate asset valuation into their asset management practices and infrastructure investment and management decisions in a consistent, meaningful way. Practices have been developed and used internationally for incorporating asset valuation into an organization’s financial statements and decision-making processes, and some guidance has been produced in the United States, but such practices have not been much used in this country. Research is needed to make a detailed assessment of the issues and present practical guidelines and procedures for valuation of public-sector transportation assets in the United States and use of valuation in transportation system and asset management decision-making.


Project
Funding: $800,000
Funding Source: Full NCHRP
Start date: January 2020
End date: July 2022
Objectives

The objectives of this project are (1) to develop a playbook to support emergency management program review and development for state transportation agencies and (2) to develop and execute a deployment strategy to familiarize the affected transportation agencies of every state with the playbook and supporting emergency management materials. The playbook and related products and activities should encompass state DOTs, public transportation systems, and other transportation agencies under state control or influence (i.e., state transportation agencies).


Background

There is a need for a strategy-driven, actionable guide—a playbook—that, with incidental implementation support, will help emergent and part-time transportation emergency managers to understand, plan, and implement an emergency preparedness program that fits their agency’s needs, capabilities, and challenges. Such a playbook will serve as a simple, practical, and comprehensive emergency preparedness program development guide for transportation emergency managers; be generally applicable to all transportation emergency operations centers (EOCs); and be consistent with ICS/NIMS/HSEEP doctrine. A transportation-specific playbook will help close the gap in transportation emergency preparedness and enable quicker and more effective uptake of valuable scenario-based training and exercising tools that help organizations apply prerequisite planning and program development.

Translating strategy from the playbook to the real world (how to do it) is complex, as states vary in how they organize their activities. This project will develop and execute a strategy to effectively bridge the gap between all-hazards emergency management research and state transportation agency practice to improve state transportation agency responses over a broad continuum of emergencies affecting the nation’s travelers, economy, and infrastructure.


Project
Funding: $250,000
Funding Source: Full NCHRP
End date: December 2018
Objectives

The objective of this research is to develop a guide to bus transit service reliability. The guide will include a toolbox of resources that may be used to diagnose and manage bus transit service reliability and will describe benefits, costs, and outcomes of potential policies, strategies, and actions.



Project
Funding: $45,000
Funding Source: Synthesis
Start date: October 2019
End date: May 2021


Project
Funding: $250,000
Funding Source: Full NCHRP
Start date: September 2020
End date: August 2022
Objectives

The objective of this research is to develop a guide for state DOTs and other transportation planning agencies to understand, predict, plan for, and adapt to the potential impacts of emerging disruptive technologies. In preparing this guide, the research should identify issues, effects, and opportunities at the intersection of disruptive transportation technologies and organizational performance for senior managers at state DOTs and other transportation planning agencies; and it should include but not be limited to the following components:
· Categories of technology disruptors, such as big data, expanding digitization, vehicle and infrastructure technologies, mobility as a service, the sharing economy, mobility of people and goods, alternative travel modes, and communication technologies;
· New business opportunities or partnerships and collaboration models involving the private and public sectors, as well as impacts on how agencies execute planning and prioritize investments, implement, maintain, manage and operate the transportation system;
· Roles and responsibilities of federal, state, regional, and local agencies in evaluating, approving, regulating, enforcing, and managing new ways of moving people and goods; and
· Improving overall customer service, including effects on the transportation system’s ability to provide improved access and mobility for all users.
The target audience for this research is practitioners as well as decision-makers at state DOTs and their transportation partner organizations.


Background

The arrival of the 4th Industrial Revolution and the rapid development and fusion of multiple disruptive and innovative technologies are changing the behavior and the expectations of customers and stakeholders—not only in the United States, but all over the world. The deployment of these technologies—artificial intelligence, big data and digitization, the Internet of Things (IoT), wireless technologies (5G/6G), connected and autonomous vehicle (CAV) technologies, on-demand ride sharing services, Mobility as a Service (MaaS), the sharing economy, and others—is bringing a revolution that will fundamentally alter the way we live, work, relate to one another, and do business. In its scale, scope, and complexity, the transformation is moving at a pace at which governmental entities are not readily prepared.

Mobility is also transforming rapidly as new technologies disrupt traditional ways people and goods move throughout the transportation systems. The rapid deployment of mobile internet is upending the traditional approaches with new customer-centric business models based on the sharing economy such as car hailing, bike sharing, scooter sharing, time sharing, customized shuttle bus, parking sharing, etc. While the new business models bring more conveniences and efficiencies to the users and to the national and local economies, they are also creating new challenges and needs that state departments of transportation (DOTs) and other transportation agencies must grapple with as decision-makers. As technology previously foreign to transportation rapidly affects traditional ways of doing business, organizational structure and performance is affected across all modes and aspects of transportation. Institutional processes or procedures may be retooled or adjusted to accommodate updated or more effective methods to improve performance outcomes. These processes or procedures are necessary to help those agencies struggling to define meaningful performance measures, such as managing data collection, maintaining accountability, and streamlining reporting.


Project
Funding: $224,977
Funding Source:
Start date: June 2019
End date: June 2022
Objectives

The objectives of this project are to (a) document (beyond anecdotal discussions alone) concerns, issues and challenges DOTs and other government agencies have encountered in implementing federal transportation performance management (TPM) regulations; and (b) provide a framework for more systematic assessment of the costs associated with implementation.


Background

After more than a decade of steady progress, transportation agencies have reached a critical moment in advancing TPM practice. Federal performance management regulations initiated by the Moving Ahead for Progress in the 21st Century Act (MAP-21) established a new paradigm of nationally-coordinated performance measurement, target setting, and reporting across a range of domains including safety, asset management, multimodal mobility and air quality, and transit. State departments of transportation (DOTs), metropolitan planning organizations (MPOs), and transit agencies have responded – meeting the challenge by prioritizing advancement in areas including data collection, measure calculation, target setting, coordination and communication, and performance-based planning.
These advances have required significant investment on the part of state DOTs and other transportation agencies. Organizations including the Federal Highway Administration (FHWA), the American Association of Transportation Officials (AASHTO), and the Transportation Research Board (TRB) have also worked extensively to assist agencies in implementation: fostering the dissemination and adoption of successful practices, promoting performance management concepts, and helping develop improved tools and approaches. Yet practitioners also recognize that performance management implementation is a process of continuous improvement and many real issues and challenges remain to be resolved.



Project
Funding: $550,000
Funding Source: Full NCHRP

Project
Funding: $1,076,200
Funding Source: Full NCHRP